
Interactive Reinforcement Learning with Inaccurate Feedback

Taylor A. Kessler Faulkner1 Elaine Schaertl Short2 Andrea L. Thomaz3

Abstract— Interactive Reinforcement Learning (RL) enables
agents to learn from two sources: rewards taken from obser-
vations of the environment, and feedback or advice from a
secondary critic source, such as human teachers or sensor
feedback. The addition of information from a critic during
the learning process allows the agents to learn more quickly
than non-interactive RL. There are many methods that allow
policy feedback or advice to be combined with RL. However,
critics can often give imperfect information. In this work,
we introduce a framework for characterizing Interactive RL
methods with imperfect teachers and propose an algorithm, Re-
vision Estimation from Partially Incorrect Resources (REPaIR),
which can estimate corrections to imperfect feedback over
time. We run experiments both in simulations and demonstrate
performance on a physical robot, and find that when baseline
algorithms do not have prior information on the exact quality
of a feedback source, using REPaIR matches or improves the
expected performance of these algorithms.

I. INTRODUCTION

In order to learn new skills, robots must be able to take
input from the environment, either from sensors or from
human teachers. However, input from the environment is not
always correct. Sensors can intermittently fail, and teachers
can be wrong. However, it is difficult for robots to predict
ahead of time exactly how often, and in what ways, advice or
feedback will be incorrect. If robots can use task information
to model when and how feedback is incorrect, they can ignore
incorrect feedback and learn from correct feedback.

We propose an algorithm, Revision Estimation from
Partially Incorrect Resources (REPaIR), that estimates states
and actions that are likely to receive incorrect feedback, and
revises the feedback based on this estimation. This algorithm
acts as a feedback filter for RL algorithms with a reward
function and additional environmental feedback, so that the
quality of feedback does not need to be known ahead of time.
We show an illustration of the REPaIR framework in Fig.
1. REPaIR takes advantage of problems in which the robot
has access to a correct reward function, which is important
since it has been shown that without some kind of additional
information there is no way to recover from a bad reward
signal [1].

*This material is based upon work supported by the Office of Naval
Research award numbers N000141612835 and N000141612785, National
Science Foundation award numbers 1564080 and 1724157, and the NSF-
GRFP under Grant No. DGE-1610403.

1Taylor A. Kessler Faulkner is with the Department of Computer
Science, The University of Texas at Austin, Austin, TX 78712, USA
taylor.k.f@utexas.edu

2Elaine Schaertl Short is with the Department of Computer Science, Tufts
University, Medford, MA 02155, USA elaine.short@tufts.edu

3Andrea L. Thomaz is with the Department of Electrical and Computer
Engineering, The University of Texas of Austin, Austin, TX 78712, USA
athomaz@ece.utexas.edu

Fig. 1: REPaIR Framework

REPaIR is based on the insight that the quality of the
feedback can depend on the state-action pair. For example,
consider a vision system that loses sight of objects outside a
certain range, or a human teacher who gets confused about
what the goal of the task is. REPaIR uses the cumulative
reward at the end of each learning episode to determine
whether the feedback received was correct or incorrect. If
feedback received reflects the cumulative reward received
(positive feedback leads to higher total reward, negative
feedback leads to lower total reward), the robot has a higher
trust in the feedback. Otherwise, the robot has lower trust
in the feedback. REPaIR then either keeps, discards, or
changes the feedback based on the trust. REPaIR can be
used to estimate feedback correctness for feedback-utilizing
Interactive RL algorithms.

We test REPaIR with three baseline algorithms: Policy
Shaping (PS) [2], and two versions of TAMER+RL (TAMER-
P, TAMER-W) [3], which all have trust parameters to handle
varying feedback quality. We show that adding REPaIR
to these baselines matched or exceeded performance for
83.33% (TAMER-P), 83.33% (TAMER-W), and 100% (PS)
of tested feedback quality settings in simulation. The average
performance with REPaIR in these settings exceeded or
matched more than half of mismatched trust parameters,
which implies that REPaIR matches or improves expected
performance on these baselines when they do not have prior
information on feedback quality. We also demonstrate REPaIR
on a manipulation task with a physical robot in which the
robot must grasp a cup, with feedback provided by a noisy
object detector. We found the differences in means consistent
with the results in simulations.

II. BACKGROUND

Prior work has proposed algorithms that provide some form
of compensation for incorrect supplemental environmental
information. These include methods using feedback, advice,
and demonstrations from which robots can learn.

Like Interactive RL, Inverse Reinforcement Learning (IRL)
allows agents to learn from human teachers. However, in IRL,
the agent is provided with full (if incorrect) demonstrations
from the teacher and has to estimate the reward function that
results in these demonstrations [4]–[7]. Like our work, Evans
et al. [4] observes that there are patterns to the behavior

of incorrect agents. Their work estimates the preferences of
people using Bayesian inference over models of possible
inaccurate agents, and assumes that there are patterns to
the behavior of incorrect agents. However, all of these
works require full demonstrations from users, which may
be more difficult than giving feedback depending on the
complexity of the task. Other methods require other ground
truth information, such as a ranking over all demonstrations
[5], the knowledge that all demonstrations are incorrect [6],
or that bad demonstrations can be treated as sparse noise [7].
Our method does not rely on these assumptions, and allows
feedback to be incorrect in any amount while using a reward
function defined by an expert.

Other work combines potentially incorrect feedback ([2],
[3], [8]) or demonstrations [9]–[11] with an RL framework.
Griffith et al. [2] use static trust in a teacher’s feedback, which
may not account for varying levels of feedback performance.
Knox and Stone [3] propose several methods of combining
feedback with a reward function: the two top-performing
methods use a weighted method of taking actions based on
the human feedback, which discounts good feedback as well
as bad. Our algorithm can learn how good feedback is over
time, rather than setting a trust parameter before receiving
feedback. Sridharan [8] keeps track of multiple policies from
a reward function, and one policy from feedback. The trust in
the feedback is weighted based on the amount of agreement
of actions between its policy and the reward function policies.
However, this method stores N + 1 policies, as the reward
function is not assumed to be correct. This can take a large
amount of memory as the state space size grows. Our method,
REPaIR, uses less space since fewer policies are stored. One
method similar to [8] also bases the trust in a teacher based
on a comparison between the advice from a teacher and the
currently learned Q-values, as well as the current trust in a
deep RL algorithm [12]. Our work uses feedback (information
about the quality of an action after it is taken) rather than
advice (information about the quality of potential actions
before they are taken), as the robot would take incorrect
advice when seen for the first time, but feedback can be
considered first, compared to the received reward, and worked
into the estimation of potentially incorrect information.

Other prior work attempts to detect unreliable sensors
[13], [14]. However, these methods require multiple sensors,
which may not be available on publicly deployed robots. Our
algorithm can take only one unreliable feedback source and a
sparse reward function to estimate what feedback is incorrect.

III. ALGORITHM

A. Framework for Interactive RL with Inaccurate Feedback

Along with the REPaIR algorithm, we also propose a
framework for discussing Interactive RL problems with
inaccurate feedback. As with the standard RL problem,
we begin with a Markov Decision Process (MDP). This
framework is inspired by Everitt et al. [1], who developed a
framework for CRMDPs (Corrupt Reward MDPs), for which
the reward signal itself is unreliable, and thus a corruption
function between correct and received reward is defined. We

propose the following Imperfect Feedback MDP (IFMDP),
consisting of a tuple (S,A, T,R, F ∗, F, γ) as follows:

• S : a set of states
• A : a set of actions
• T (s, a, s′) : probabilities of transitioning to s′ ∈ S when

taking a ∈ A in s ∈ S
• R(s, a) : the reward function
• F ∗(s, a), F (s, a): a "correct" and given feedback func-

tion, related by Γ s.t. F (s, a) = Γ(F ∗(s, a))
• γ: a discount factor

S,A, T,R and γ are all identical to the standard MDP. We
add F ∗ and F , which are the correct and given feedback
functions. Correct feedback will elicit the optimal policy,
π∗, for the given reward function R. That is, more favorable
actions in π∗ will receive higher feedback. The corruption
function, Γ, is the difference between F ∗(s, a) and F (s, a)
s.t. F (s, a) = Γ(F ∗(s, a)), as defined by Everitt et al. to
relate reward signals [1].

B. Preliminaries

In this work, we take advantage of a correct reward
function R. Otherwise, with an imperfect teacher and without
additional information, it is impossible for the agent to tell
what behavior is actually desired, as shown in [1]. We use
sparse reward functions, as consistent feedback is most helpful
when the reward function is not meticulously shaped to guide
the agent to the goal. Our R has positive rewards only on goal
states and low negative rewards only on states to be avoided,
potentially with small negative rewards on all other state-
action pairs if fast travel to goal states should be encouraged.
Such reward functions are easy for people to define, compared
to dense reward functions. However, they are also more
difficult for agents to learn from than well-populated rewards,
as high-magnitude rewards will take longer to propagate
through the large areas of small negative reward. Thus F ∗

acts as a dense representation of R, as the agent can receive
meaningful ranked feedback on each state-action pair.

We leverage a correct reward function R to compensate
for incorrect feedback. To do so, we observe that the current
state and action has some impact on the correctness of the
feedback. Some prior work has assumed that feedback either
improves or worsens over time, or that feedback is randomly
incorrect some percentage of the time [2], [3]. In practice, the
current state-action pair often has an effect on the correctness
of feedback. For example, consider a human teacher that
does not understand the joint limits of a robotic arm. In this
case, states and actions near the limits can receive incorrect
feedback, as the teacher may give feedback that suggests
an efficient path that takes the robotic arm into unsafe or
impossible joint positions. However, other states and actions
receive correct feedback. Another example is a vision system
that can reliably detect distinct objects, but not if two such
objects are too close to each other. In this case, states in
which two or more objects are close may receive incorrect
feedback on actions intended to grasp one object.

C. REPaIR Algorithm

We present Revision Estimation from Partially Incorrect
Resources (REPaIR) in Algorithm 1. REPaIR gives an
estimation of the inverse of the corruption function, Γ, to an
Interactive RL algorithm to compensate for bad feedback. We
will refer to this estimation as Γ′, where the input to Γ′ is
F (s, a), a state-action pair (s, a) with feedback f . The output
of Γ′ is an estimated revision f ′, an attempt to recreate F ∗.
Γ cannot be directly measured, as there is no ground truth
for correct feedback until the value function is learned, at
which point revisions to feedback are unnecessary. Γ′ gives
corrected feedback to a learning algorithm.

To update Γ′ (and thus its estimate of the inverse of Γ),
the agent uses the only ground-truth feedback, the reward
function R. Since immediate high rewards do not always
indicate the highest cumulative reward when the goal is
reached, especially in sparse reward functions, cumulative
rewards collected at the end of each episode are used as
ground-truth information.

As the agent learns, it saves the state-action trajectory ξ
that it takes in each learning episode, with feedback/advice
fi for each (si, ai). At the end of each episode, it saves its
final total reward, Rξ. For (si, ai, fi) ∈ ξ, if a higher Rξ
has not been seen for (si, ai, fi), we save it in the highest
rewards: Rmax[(si, ai, fi)] = Rξ . We assign a trust ti in the
range [0, 1] to the feedback on (si, ai, fi):

t(si,ai,fi) =

{
Rmax[(si,ai)]−min(Rmax)
max(Rmax)−min(Rmax) fiis positive

1− Rmax[(si,ai)]−min(Rmax)
max(Rmax)−min(Rmax) fiis negative

(1)
The intuition behind this trust assignment is that an action

should not be catastrophic if it results in one of the higher
seen cumulative rewards. REPaIR determines whether to
invert, keep, or discard feedback as follows, where tmin and
tmax are threshold parameters. If t(si,ai,fi) ≥ tmax , REPaIR
keeps the feedback: fi = fi. If t(si,ai,fi) ≤ tmin, REPaIR
inverts the feedback: fi = −fi. Otherwise, REPaIR discards
the feedback: fi = 0.

IV. EXPERIMENTAL BASELINES

We compare against three baselines and Q-Learning [15]
(RL without feedback): two versions of TAMER+RL [3],
and Policy Shaping (PS) [2]. REPaIR is used to supplement
the two TAMER+RL methods and PS. We chose these base-
line algorithms because they take additional environmental
feedback but do not use it to modify their reward or value
functions, which can cause changes to the final optimal policy
[16]. Thus the reward function will remain correct, which is
a requirement for REPaIR. We expect REPaIR to improve
the performance of these baselines because REPaIR estimates
feedback quality based on the current state and action, rather
than assuming a static trust [2] or simply decreasing trust
over time [3]. Thus, the trust parameters for these baselines
do not need to be varied to match the feedback quality, which
may not be known in advance in a real-world scenario. We
implemented all algorithms in Python 2.7.

Algorithm 1: REPaIR

1 Γ′ = feedback revision estimator;
2 Rmax = −∞ = maximum total rewards seen;

tmin, tmax = thresholds for inverting and keeping
feedback;

3 while learning do
4 Rξ = 0;
5 ξ = [];
6 while episode not over do
7 si, ai = current state, action;
8 Rξ = Rξ + reward;
9 fi = feedback;

10 ξ.append([si, ai, fi])
11 end
12 for (si, ai, fi) ∈ ξ do
13 Rmax[(si, ai, fi)] =

max(Rmax[(si, ai, fi)], Rξ);
14 t(si,ai,fi) ={

Rmax[(si,ai)]−min(Rmax)
max(Rmax)−min(Rmax) fiis positive

1− Rmax[(si,ai)]−min(Rmax)
max(Rmax)−min(Rmax) fiis negative

;

15 if t(si,ai,fi) ≤ tmin then
16 Γ′(fi) = −fi;
17 else if t(si,ai,fi) ≥ tmax then
18 Γ′(fi) = fi;
19 else
20 Γ′(fi) = 0;
21 end
22 end
23 end

A. Q-Learning

Q-Learning, an off-policy method of RL, uses a learning
rate α and a discount factor γ to learn Q-values from rewards
using a Bellman update over episodes. For our baseline, we
use Q-learning with Boltzmann exploration [15], [17]. Using
Boltzmann exploration, the probability of taking any action
a in state s is

Pr
q

(s, a) =
e
Q(s,a)
τ∑

a′ e
Q(s,a′)

τ

using the learned Q-values Q(s, a) and τ , a temperature
parameter. We implement all of the following baselines with
Q-Learning as the underlying RL algorithm.

B. TAMER+RL

TAMER is an algorithm for replacing a reward function
with human feedback [18], [19]. An extension to TAMER
experimented with several methods of combining scalar
feedback with a reward function [3]. We consider two such
methods that were shown to outperform SARSA [20], an on-
policy method of RL. In the following equations, Ĥ(s, a) is
the human’s reward function, learned over time using TAMER.
We do make one small change to the usual TAMER feedback.

Usually, TAMER uses a learned predictor of feedback after
each state-action pair, in tasks that do not allow immediate
feedback from humans after each action [18], [19]. Our tasks
allow immediate feedback. Thus, when feedback is given
for a state-action pair, Ĥ(s, a) is this feedback. When no
feedback has been given, we use the learned predictor. Using
the actual current feedback rather than the predicted in all
cases allows TAMER to learn from good feedback more
quickly, which we can take advantage of in this environment.

1) TAMER-P: P (a = argmaxa[Ĥ(s, a)]) = p, otherwise
original RL agent’s action selection mechanism is used.
p is gradually diminished over time, so the human’s
feedback is more influential at the start of the learning
process.

2) TAMER-W: a = argmaxa[Q(s, a) + w*Ĥ(s, a)]

We anneal p and w over time, as in [3]. They are decreased
by 0.01% at the end of each learning episode.

C. Policy Shaping

Policy Shaping [2], [21] enables people to give binary
feedback, positive or negative, to a learning robot. This
feedback shapes the robot’s policy, influencing it towards
state-action pairs that have received positive feedback from
a human teacher. All actions consider the human feedback
as the difference in positive and negative values given by
the teacher, or ∆s,a. Using ∆s,a rather than the count of
positive feedback on (s, a) compensates for the possibility
that teachers may be slightly inconsistent in their feedback
on the same state-action pair at different times.

Policy Shaping affects the exploration style of the robot,
rather than influencing the rewards or Q-values of the MDP
directly. Let the probability of taking any action using
exploration methods based purely on the MDP be Prq(a|s).
The probability that an action is good using feedback is

Pr
c

(a|s) =
C∆s,a

C∆s,a + (1− C)∆s,a
,

where C ∈ [0, 1] is a trust parameter, with 0 being complete
distrust in the human teacher and 1 being complete trust.
When C = 0.5, PS reduces to RL with no feedback. In
our experiments, we cap ∆s,a between -50 and 50 to avoid
overflow computation errors in Python 2.7. Using Prq(a|s)
and Prc(a|s), the probability of taking any action a ∈ A in
state s ∈ S while learning is

Pr
p

(a|s) =
Prq(a|s) Prc(a|s)∑
α∈A Prq(α|s) Prc(α|s)

.

V. VALIDATION

We run experiments in simulation to compare the perfor-
mance of interactive RL algorithms with and without REPaIR.
As a proof of concept, we also run experiments on a physical
robot with a Kinova Jaco 7-dof arm and Robotiq gripper
to compare the performance of Policy Shaping (PS) and
PS+REPaIR.

A. Simulation Task

We use a staging task in simulation, for which it is easy to
modify the feedback performance to test. The agent learns to
place six objects into two bins, with four objects in bin one
(b1) and two objects in bin two (b2). The agent has sixteen
objects total, and can place or remove one object at a time
from the bins. The agent can also choose to end the task at
any time, and must do so to end the learning episode. The
MDP is as follows:
• S : [b1 contents, b2 contents]
• A : ["place one object into b1", "place one object into
b2", "remove one object from b1", "remove one object
from b2", "end task"]

• T (s, a, s′) : deterministic transition function
• R(s, a) : +100 if a = "end task" at goal state, -10 if
a = "end task" not at goal state, -1 otherwise.

We define perfect feedback (F ∗) for this task as follows.
The critic gives positive rewards for ending the task when
there are four objects in b1 and two objects in b2, for
adding objects to b1 or b2 when there are less than 4 and 2
respectively, and for removing objects from b1 or b2 when
there are more than 4 and 2 respectively. The critic gives
negative feedback otherwise.

For this task, we averaged over 50 trials of Q-Learning to
optimize the parameters for area under the learning curve (the
cumulative reward over all 100 episodes): τ = 0.5, α = 0.8,
γ = 0.8. If the robot does not end the task before 100 actions,
the episode ends with -10 reward.

B. Simulation Experiments

We run experiments adding REPaIR to three different
algorithms in simulation: Policy Shaping (PS) [2], [21] and
the top two performing algorithms from TAMER + RL [3]
(TAMER-P, TAMER-W). We vary the feedback quality as
follows. We pick some percent of states to receive correct
feedback, and choose these states at random. We vary the
correct percentage from 0 to 100, in increments of 20. We
compare the algorithm (PS, TAMER-P, TAMER-W) to Q-
Learning and the algorithm with all feedback first given to
REPaIR. All feedback is binary good/bad (1,-1) to maintain
consistency across all algorithms. Thus in the TAMER
feedback predictor (for state-action pairs where no feedback
has been received), all positive feedback predictions are
mapped to +1 and negative predictions to -1. All experiments
are run over 100 learning episodes and averaged over 30 trials
of each type of teacher. We show the average area under the
learning curve (the total reward over all 100 episodes) for
each level of feedback correctness. This area is calculated
using the composite trapezoidal rule.

One advantage of REPaIR is that it allows a single trust
parameter to be used across a wide variety of feedback
reliability, rather than requiring tuning to a specific source
of feedback. Therefore, we keep all trust parameters (C,w,p)
set to 0.8 for the experiments. We chose 0.8, as this value
weights feedback positively but does not trust it fully. We vary
the trust parameters for the baseline algorithms. This tests

whether the addition of REPaIR outperforms the baseline
algorithms if the quality of the teacher is not known ahead of
time. Trust parameters are varied from 0.0 to 1.0 in increments
of 0.1 for all baselines, with minor exceptions. For TAMER,
w = 0.0 and p = 0.0 are equivalent to Q-Learning, so these
are not tested. For PS, C = 0.5 is equivalent to Q-Learning,
and C cannot be exactly 0 or 1 as these lead to dividing by
zero. Thus C is set between 0.01 and 0.99, excluding 0.5.
We measure the percentage of trust settings (out of 10 total)
that perform differently than the baseline plus REPaIR.

We set tmin and tmax for each baseline algorithm. Recall
that feedback is inverted when the trust is less than or equal
to tmin, and kept when the trust is great than or equal
to tmax. While these parameters are task- and algorithm-
specific, they are not specific to the amount of incorrect
feedback. For TAMER-P, TAMER-W, and PS, tmin and tmax
are [0.05,0.85], [0.0,0.95], and [0.05,0.35] respectively.

C. Robot Task

The agent learns to grasp a cup on a table by moving its
gripper above the table in cardinal directions on a 4 by 4
grid, and reaching down to grasp when it is over the cup.
The MDP is as follows:
• S : x, y location of gripper in 4 by 4 grid
• A : all four cardinal directions, and attempt a grasp
• R(s, a) : +100 if robot successfully attempts grasp, -10

if robot unsuccessfully attempts grasp or after 16 actions,
-1 otherwise.

The robot receives a reliable reward function from detecting
whether its gripper is fully closed after attempting a grasp.
If the gripper is not fully closed (blocked by the cup), the
cup has been successfully grasped. The episode ends if the
robot attempts a grasp or after a maximum of 16 actions. All
experiments are 40 episodes long and averaged over 5 runs
of each algorithm.

Feedback is given using the ORP object recognition and
pose estimation system [22] to locate the position of the cup
relative to the robot’s gripper. If the gripper moves closer to
the cup, the robot receives positive feedback, and receives
negative feedback otherwise. When the arm gets in between
the cup and the camera, the visual system may not perceive
the cup and thus give negative feedback, as the gripper is not
getting closer to any perceived cup position. Other situations
(such as the gripper intersecting the cup view) may give
incorrect positions for the cup’s location. When initially tested,
the gripper fully blocked the cup in 25% of states, and partially
blocked the cup in another 12.5%. Additional noise came from
changes over time, such as changing indoor lights, movement,
and arm positions.

D. Robot Experiment

We optimized Q-Learning in simulation to optimize the
parameters for area under the learning curve: τ = 0.1, α =
1.0, γ = 0.9. We test C = 0.2 (PS−0.2) and C = 0.8 (PS−
0.8) as the midpoint performance of trusting or discounting
all feedback. We set tmin and tmax to [0.0,0.95].

Fig. 2: TAMER-P compared to TAMER-P+REPaIR and Q-
Learning. p varies for TAMER-P as shown by the varied dots,
and p = 0.8 for TAMER-P+REPaIR

Percentage of States with Correct Feedback

0.0* 0.2* 0.4* 0.6* 0.8* 1.0
Significantly Higher 70% 70% 80% 0% 0% 30%
Similar 10% 10% 20% 60% 60% 20%
Significantly Lower 20% 20% 0% 40% 40% 50%

TABLE I: Changes in performance from adding REPaIR to
TAMER-P out of 10 different p settings

VI. RESULTS

In all results discussed, +REPaIR indicates that an al-
gorithm was run with the feedback run through Γ′. All
significance values are calculated using a one-way ANOVA
and a Tukey post-hoc test, with p < 0.05 required for
significance. In Figs. 2, 3, and 4, the two lines show
performance for baseline+REPaIR and Q-Learning. The
baseline algorithm is represented as a gradient of points,
each of which represents one run (100 episodes long), where
the color represents the trust parameter setting for that run
(darker is higher).

1) TAMER-P Simulation: Results for TAMER-P and
TAMER-P+REPaIR are shown in Fig. 2. The percentage
of p settings for which TAMER-P+REPaIR significantly
outperforms or underperforms the average TAMER-P is
shown in Table I. Across all feedback quality levels, adding
REPaIR matched or exceeded baseline performance over the
majority of p settings in 83.33% of cases (starred in Table
I). TAMER-P+REPaIR also outperforms Q-Learning at 80%
and 100% correct state feedback.

2) TAMER-W Simulation: Results for TAMER-W and
TAMER-W+REPaIR are shown in Fig. 3. The percentage
of w settings for which TAMER-W+REPaIR significantly
outperforms or underperforms the average TAMER-W is
shown in Table II. Over all feedback quality levels, adding
REPaIR matched or exceeded baseline performance over the
majority of w settings in 83.33% of cases (starred in Table II).
TAMER-W+REPaIR also outperforms Q-Learning at 60%,
80% and 100% correct state feedback.

3) Policy Shaping Simulation: Results for PS and
PS+REPaIR are shown in Fig. 4. The percentage of C
settings for which PS+REPaIR significantly outperforms or
underperforms the average PS is shown in Table III. Over

Fig. 3: TAMER-W compared to TAMER-W+REPaIR and
Q-Learning. w varies for TAMER-W as shown by the varied
dots, and w = 0.8 for TAMER-W+REPaIR

Percentage of States with Correct Feedback

0.0* 0.2* 0.4* 0.6* 0.8* 1.0
Significantly Higher 70% 70% 100% 30% 30% 10%
Similar 10% 20% 0% 30% 40% 30%
Significantly Lower 20% 10% 0% 40% 30% 60%

TABLE II: Changes in performance from adding REPaIR to
TAMER-W out of 10 different w settings

Fig. 4: PS compared to PS+REPaIR and Q-Learning. C
varies for PS as shown by the varied dots, and C = 0.8 for
PS+REPaIR

Percentage of States with Correct Feedback

0.0* 0.2* 0.4* 0.6* 0.8* 1.0*
Significantly Higher 50% 60% 100% 50% 50% 60%
Similar 10% 40% 0% 20% 30% 10%
Significantly Lower 40% 0% 0% 30% 20% 30%

TABLE III: Changes in performance from adding REPaIR to
PS out of 10 different C settings

all feedback quality levels, adding REPaIR adding REPaIR
matched or exceeded baseline performance over the majority
of C settings in 100.00% of cases (starred in Table III).
PS+REPaIR also outperforms Q-Learning at 60%, 80% and
100% correct state feedback.

4) Policy Shaping on Robot: Results are shown in Fig.
5. The addition of REPaIR, with an average of 1788.3 area
under the learning curve, outperforms PS with C = 0.8, with
an average of 1680.2 area under the learning curve, and PS
with C = 0.2, with an average of 1026.7 area under the

Fig. 5: Performance of PS and PS+REPaIR on a robot

learning curve. These results are not significant (p = 0.44)
using Welch’s Anova, but show that a physical robot can
learn a task using feedback filtered through REPaIR, and
suggests that using REPaIR may improve performance.

VII. DISCUSSION AND CONCLUSIONS

Our simulation results show that adding REPaIR to these
baselines matched or improved performance for 83.33%
(TAMER-P), 83.33% (TAMER-W), and 100% (PS) of tested
feedback quality settings. The average performance with
REPaIR in these settings exceeded or matched more than half
of mismatched trust parameters. For TAMER-P and TAMER-
W, REPaIR can decrease performance when feedback is
perfect, but this is balanced by the substantial performance
gains for imperfect feedback. This is because over-trusting
feedback lets the robot take full advantage of correct feedback,
but can lead to bad performance when feedback is bad. As
shown by the color gradient of baseline points in Figs. 2,
3, and 4, the best performance comes from matching trust
to actual feedback quality. In contrast, REPaIR can perform
well with one trust setting, thus improving learning when
the quality of feedback is not fully known in advance. We
demonstrated the performance of REPaIR in a real-world
robot experiment, which suggested that a robot can use
REPaIR to filter feedback from a sensor while learning.

Our results show that when Interactive RL algorithms do
not have prior knowledge on the correctness of a feedback
source, using REPaIR to estimate better quality feedback
improves performance. In practice, a robot will rarely know
the quality of a feedback source in advance. A human teacher
might have a wide range of understanding of a task, or
they may act adversarially. Sensor feedback might be highly
useful for guiding learning, but might also be inconsistent
in unpredictable ways. While REPaIR does have parameters
that affect its performance, tmin and tmax, these parameters
can be set for a certain task and baseline RL algorithm, and
do not rely on the correctness of the feedback. Thus REPaIR
can be used to improve Interactive RL performance when the
quality of a feedback source is unknown.

Future directions for work in this area include using
multimodal feedback to improve feedback evaluation. Robots
could also learn to transfer learned patterns of incorrect states
to new tasks, or to unseen state-action pairs by learning
similarities between states. While REPaIR uses trajectories
of state-action pairs, future work could extend the approach
to continuous state spaces.

REFERENCES

[1] T. Everitt, V. Krakovna, L. Orseau, and S. Legg, “Reinforcement
learning with a corrupted reward channel,” in Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence,
2017.

[2] S. Griffith, K. Subramanian, J. Scholz, C. L. Isbell, and A. L. Thomaz,
“Policy shaping: Integrating human feedback with reinforcement
learning,” in Advances in neural information processing systems, 2013,
pp. 2625–2633.

[3] W. B. Knox and P. Stone, “Combining manual feedback with subsequent
mdp reward signals for reinforcement learning,” in Proceedings of the
9th International Conference on Autonomous Agents and Multiagent
Systems: volume 1-Volume 1. International Foundation for Autonomous
Agents and Multiagent Systems, 2010, pp. 5–12.

[4] O. Evans, A. Stuhlmüller, and N. Goodman, “Learning the preferences
of ignorant, inconsistent agents,” in Thirtieth AAAI Conference on
Artificial Intelligence, 2016.

[5] D. Brown, W. Goo, P. Nagarajan, and S. Niekum, “Extrapolating
beyond suboptimal demonstrations via inverse reinforcement learning
from observations,” in Proceedings of the 36th International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97.
Long Beach, California, USA: PMLR, 09–15 Jun 2019, pp. 783–792.
[Online]. Available: http://proceedings.mlr.press/v97/brown19a.html

[6] D. H. Grollman and A. G. Billard, “Robot learning from failed
demonstrations,” International Journal of Social Robotics, vol. 4, no. 4,
pp. 331–342, 2012.

[7] J. Zheng, S. Liu, and L. M. Ni, “Robust bayesian inverse reinforcement
learning with sparse behavior noise,” in Twenty-Eighth AAAI Conference
on Artificial Intelligence, 2014.

[8] M. Sridharan, “Augmented reinforcement learning for interaction with
non-expert humans in agent domains,” in 2011 10th International
Conference on Machine Learning and Applications and Workshops,
vol. 1. IEEE, 2011, pp. 424–429.

[9] M. Večerík, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess,
T. Rothörl, T. Lampe, and M. Riedmiller, “Leveraging demonstrations
for deep reinforcement learning on robotics problems with sparse
rewards,” arXiv preprint arXiv:1707.08817, 2017.

[20] R. S. Sutton, A. G. Barto, et al., Introduction to reinforcement learning.
MIT press Cambridge, 1998, vol. 2, no. 4.

[10] Y. Gao, J. Lin, F. Yu, S. Levine, T. Darrell, et al., “Reinforcement learn-
ing from imperfect demonstrations,” arXiv preprint arXiv:1802.05313,
2018.

[11] K. Subramanian, C. L. Isbell Jr, and A. L. Thomaz, “Exploration from
demonstration for interactive reinforcement learning,” in Proceedings of
the 2016 International Conference on Autonomous Agents & Multiagent
Systems. International Foundation for Autonomous Agents and
Multiagent Systems, 2016, pp. 447–456.

[12] Z. Lin, B. Harrison, A. Keech, and M. O. Riedl, “Explore, exploit or
listen: Combining human feedback and policy model to speed up deep
reinforcement learning in 3d worlds,” arXiv preprint arXiv:1709.03969,
2017.

[13] A. Yazidi, B. J. Oommen, and M. Goodwin, “On distinguishing between
reliable and unreliable sensors without a knowledge of the ground truth,”
in 2015 IEEE/WIC/ACM International Conference on Web Intelligence
and Intelligent Agent Technology (WI-IAT), vol. 2. IEEE, 2015, pp.
104–111.

[14] K. Ni and G. Pottie, “Bayesian selection of non-faulty sensors,” in
2007 IEEE International Symposium on Information Theory. IEEE,
2007, pp. 616–620.

[15] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[16] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in ICML,
vol. 99, 1999, pp. 278–287.

[17] C. Watkins, “Models of delayed reinforcement learning,” PhD thesis,
Psychology Department, Cambridge University, 1989.

[18] W. B. Knox and P. Stone, “Tamer: Training an agent manually via
evaluative reinforcement,” in 2008 7th IEEE International Conference
on Development and Learning. IEEE, 2008, pp. 292–297.

[19] ——, “Interactively shaping agents via human reinforcement: The
tamer framework,” in Proceedings of the fifth international conference
on Knowledge capture. ACM, 2009, pp. 9–16.

[21] T. Cederborg, I. Grover, C. L. Isbell, and A. L. Thomaz, “Policy
shaping with human teachers,” in Twenty-Fourth International Joint
Conference on Artificial Intelligence, 2015.

[22] A. D. Allevato et al., “An object recognition and pose estimation library
for intelligent industrial automation,” Master’s thesis, University of
Texas at Austin, 2016.

http://proceedings.mlr.press/v97/brown19a.html

	Introduction
	Background
	Algorithm
	Framework for Interactive RL with Inaccurate Feedback
	Preliminaries
	REPaIR Algorithm

	Experimental Baselines
	Q-Learning
	TAMER+RL
	Policy Shaping

	Validation
	Simulation Task
	Simulation Experiments
	Robot Task
	Robot Experiment

	Results
	TAMER-P Simulation
	TAMER-W Simulation
	Policy Shaping Simulation
	Policy Shaping on Robot

	Discussion and Conclusions
	References

