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Abstract We present a framework for learning skills from
novel types of demonstrations that have been shown to be
desirable from a human-robot interaction perspective. Our
approach –Keyframe-based Learning from Demonstration
(KLfD)– takes demonstrations that consist of keyframes; a
sparse set of points in the state space that produces the in-
tended skill when visited in sequence. The conventional type
of trajectory demonstrations or a hybrid of the two are also
handled by KLfD through a conversion to keyframes. Our
method produces a skill model that consists of an ordered set
of keyframe clusters, which we call Sequential Pose Distri-
butions (SPD). The skill is reproduced by splining between
clusters. We present results from two domains: mouse ges-
tures in 2D and scooping, pouring and placing skills on a
humanoid robot. KLfD has performance similar to exist-
ing LfD techniques when applied to conventional trajectory
demonstrations. Additionally, we demonstrate that KLfD may
be preferable when demonstration type is suited for the skill.

Keywords Learning from Demonstration · Kinesthetic
Teaching · Human-Robot Interaction · Humanoid Robotics

1 Introduction

The goal of Learning from Demonstration (LfD) is to en-
able humans to teach a robot new skills by showing success-
ful examples [5]. There are various ways to provide these
demonstrations. In this work we focus on kinesthetic teach-
ing, in which a human teacher physically guides the robot in
performing the skill, as shown in Fig. 1.
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Fig. 1 Simon interacting with a teacher, learning a new skill via KLfD.

Kinesthetic teaching has several advantages. Since the
teacher directly manipulates the robot there is no correspon-
dence problem and demonstrations are restricted to the robot’s
kinematic limits (e.g. workspace, joint limits). Moreover,
extra instrumentation (motion capture or teleoperation de-
vices) is not necessary. However, kinesthetic teaching could
pose challenges for everyday users who do not have experi-
ence manipulating a robot with many degrees of freedom.

In the typical kinesthetic teaching interaction, and in most
LfD interactions, each demonstration is an entire state tra-
jectory, that is, the teacher provides a continuous uninter-
rupted demonstration of the skill to the robot.

The assumption is that kinesthetic teaching will be par-
ticularly intuitive for end-users, but there have been rela-
tively few user studies of existing methods. In previous work [2,
3], we analyzed LfD from an interaction perspective. We
introduced an alternative to trajectory demonstrations, pro-
viding a sparse set of consecutive poses or keyframes, that
achieve the skill when connected together. In multiple stud-
ies, we have concluded that both keyframe and trajectory



2 Akgun et al.

input modes have their advantages, depending on the na-
ture of the skill being taught. Moreover, for complex skills
it is likely that portions of the skill are best taught with key-
frames and other portions with trajectories. Such skills can
be taught through what we call hybrid demonstrations.

Our goal is to improve LfD from a Human-Robot Inter-
action (HRI) perspective, by enabling end-users to use dif-
ferent the demonstration types at different points in time.
Our intuition is that people will have differing preferences,
but it may also be the case that some tasks/skills lend them-
selves to a particular type. In this paper we present a sys-
tem that can learn in a unified way regardless of demonstra-
tion type (trajectory, keyframe or hybrid). We show how to
process data collected with different input methods. Our ap-
proach converts all demonstrations into keyframes and pro-
duces a skill model that is Sequential Pose Distributions
(SPD). We refer to the entire learning approach as Keyframe-
based LfD (KLfD).

We first present some background that motivates our ap-
proach and provide details on the different steps of the KLfD
framework. Next we present two evaluation domains and de-
scribe data collection. In Sec. 6 we give example outcomes
of the method for different domains and input types. We
present a quantitative comparison of KLfD with a baseline
LfD technique, and a comparison of different input types.
We find that KLfD is on par with a conventional LfD tech-
nique when using traditional trajectory demonstration input,
and that KLfD performs best when the input type is suited
for the particular skill. Finally we discuss possible exten-
sions to the framework, suggesting ways to replace modules
of our KLfD pipeline with other techniques.

2 Background

Traditional LfD techniques work with demonstrations that
are continuous sequences of points in the state space, re-
ferred to as trajectories. Typically start and end points of
a demonstration are explicitly demarcated by the teacher,
and the robot records (with a sufficiently high frequency)
the change of the state between these two events.

Demonstrations often consist of arm joint and/or end-
effector trajectories [9, 16]. Some also consider the configu-
ration of the end-effector with respect to the target object
of the skill [6, 14]. Most studies subsample the recorded
data with a fixed rate [4, 6]. Demonstrations are often time
warped such that a frame-by-frame correspondence can be
established between multiple demonstrations [16].

2.1 Learning from Demonstration Techniques

There are several methods for learning skills; most can be
categorized as either direct policy learning or cost/reward

learning. Dynamical system approaches such as Stable Es-
timator of Dynamical Systems (SEDS) [18] and Dynamic
Movement Primitives (DMP) [24] as well as mixture mod-
els (e.g. Gaussian Mixture Models as in [10]) are policy
learning methods. On the other hand, inverse reinforcement
learning (IRL) [1] or apprenticeship learning and inverse op-
timal control (IOC) [25] are cost/reward learning methods.
The policy is derived from the cost/reward afterwards.

These methods were designed for different purposes and
each have their pros and cons. Apart from GMMs and DMPs,
most require many training samples which is not suitable for
short-duration HRI settings. DMPs and GMMs have either
implicit or explicit time dependency. Most methods either
cannot handle cyclic skills or need reformulation to do so.

2.2 Keyframes

There have been previous uses of keyframe-related ideas
in other fields. Keyframes have been used extensively in
the computer animation literature [23]. The animator cre-
ates important frames in a scene and the software fills in
between. In the LfD setting, an earlier work [21] utilizes via-
points, which are similar to keyframes. These are extracted
from continuous teacher demonstrations with the method
proposed in [27] and updated to achieve the demonstrated
skill. A recent approach is to only record keyframes and
use them to learn a constraint manifold for the state space
in a reinforcement learning setting [7]. Whole body grasps
for a simulated humanoid are learned in [17] by forming
template grasp demonstrations via keyframes, which are the
start/end points of a demonstration and the points of contact
and points of lost contact with the objects.

2.3 An HRI perspective on LfD

LfD is motivated by the goal of robots learning from end-
users. A survey of LfD work [5] shows a vast range of dif-
ferent input schemes that lead to very different interactions
for the end-user: teleoperating a robot, performing a task in a
motion capture setting, performing the task uninstrumented,
moving a robot kinesthetically to provide learning data. By
and large, the field lacks an understanding of the usability of
the assumed input mechanisms of various LfD techniques.
This is our overall research agenda, to create LfD techniques
that end-users find natural and intuitive.

In this work we focus on one popular input mode for
LfD–kinesthetic teaching. Human-robot interaction has not
been a focus of prior work on kinesthetic teaching, but there
are a few examples. In [28], kinesthetic teaching is embed-
ded within a dialog system that lets the user start/end demon-
strations and trigger reproductions of the learned skill with
speech. A modification to the kinesthetic teaching interface
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is kinesthetic correction [8], where the teacher corrects as-
pects of a learned skill in an incremental interaction by using
a subset of joints in subsequent demonstrations.

3 Keyframe and Hybrid Demonstrations

In previous work, we proposed learning from demonstra-
tion inputs that are much more sparse than traditional tra-
jectories [3]. We refer to these as keyframe demonstrations
(KD). A KD is a sequence of critical points in the state space
(i.e. poses) such that visiting each keyframe allows the robot
to achieve the skill that is being taught. We refer to conven-
tional demonstrations which are continuous sequences of
points in the state space as trajectory demonstrations (TD).

With a series of user studies, we evaluated keyframe
demonstrations against trajectory demonstrations from an
HRI perspective, revealing a set of advantages and disadvan-
tages for each [3]. Trajectory demonstrations were more in-
tuitive for naive users, and allowed teaching complex skills
where speed information is important. However, it was hard
for users to move a high dimensional robot arm smoothly, re-
quiring more practice and often resulting in noisy and unde-
sirable movements. Keyframe demonstrations, on the other
hand, were not affected by unintended, noisy motions. In
addition, they provide a compact representation that allows
generalization and flexibility and facilitates temporal align-
ment. A drawback of keyframe demonstrations is the lack of
timing and speed information for keyframe poses.

In either LfD interaction the teacher needs to indicate
the start and end of demonstration through some modality.
We choose to use speech as it is hands-free. For a trajec-
tory demonstration the teacher indicates the start, moves the
robot, and then indicates the end. For keyframe demonstra-
tions the teacher uses additional speech commands, while
moving the robot, to indicate the keyframes.

Keyframe demonstrations allow the teacher to freely ma-
nipulate the robot and carefully configure it before record-
ing the keyframes of the demonstration. Unlike trajectory
demonstrations, this allows collecting demonstrations free
of movement noise and mistakes. On the other hand, demon-
strating complex curved movements requires a large num-
ber of keyframes when using keyframe demonstrations. We
have proposed that hybrid demonstrations (HD), which can
have both trajectory or keyframe segments, combine the ad-
vantages of both types of demonstrations.

In this article we have two experimental domains, de-
tailed in Sec. 5, one of which is a simple 2D letter draw-
ing domain. This domain is used for visualization through-
out the description of our implementation in Sec. 4. The
three demonstration types are illustrated in Fig. 2 with ex-
ample demonstrations of the capital letter P, represented as
a sequence of points in 2D. A trajectory demonstration in-
volves completing the letter in a single motion. A keyframe
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Fig. 2 Sample demonstrations of the letter P in 2D. (a) Trajectory
demonstration (TD) (b) Keyframe demonstration (KD) (c) Hybrid
demonstration (HD).
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Fig. 4 Overview of the steps involved in KLfD.

demonstration highlights important way points of the mo-
tion. And one possible hybrid demonstration communicates
the straight-line motion with two keyframes, and then the
more complex curve with a trajectory.

4 Keyframe-based Learning from Demonstrations

Traditional LfD techniques are designed for continuous tra-
jectories and cannot be directly applied to keyframe or hy-
brid demonstrations (i.e. sparse trajectories). Thus, our aim
in this paper is to introduce a framework that can handle
such varied types of input. In this section we present the
KLfD implementation details. An overview of the steps in-
volved in KLfD is given in Fig. 4. Note that individual steps
can be implemented differently and we will briefly provide a
few alternatives at the end of each step. For illustrative pur-
poses we use 2D data for the capital letter P throughout this
section. Details on how the data are generated is given later
in Sec. 5.1.

4.1 Trajectory to Keyframe Conversion

Our framework supports input of trajectory, keyframe, or
hybrid demonstrations. For trajectory and hybrid demonstra-
tions, we add a preprocessing step to convert trajectories into
keyframe sequences. To do so, we use the Forward-Inverse
Relaxation Model (FIRM) [27]. Starting with the end-points
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Fig. 3 Illustration of the steps in learning with keyframes. (a) Four demonstrations of the letter P given as continuous trajectories in 2D (b) Data
converted to keyframes (c) Clustering of keyframes and the reulting SPD (d) Trajectory produced from the learned model.

of the trajectory as keyframes, we generate a new trajec-
tory based on a fifth order spline on the keyframe positions
and velocity and acceleration at that keyframe position. This
is in essence leveraging the skill reproduction method de-
scribed later in Sec. 4.3, which can be seen as an extension
of Lowe’s method [20].

If velocity and acceleration data is unavailable from the
demonstration itself, we take the smoothed first and second
derivatives of the demonstrated trajectory respectively (us-
ing a Gaussian filter). 1 We then compare the original trajec-
tory and generated trajectory to locate the point which has
the largest Euclidean discrepancy at any given time. This
point is added as another keyframe and the process is iter-
ated until the generated and target trajectories are within an
error threshold. The threshold is determined empirically and
can be domain specific. Fig. 3(b) shows keyframes obtained
from the four trajectory demonstrations of the letter P shown
in Fig. 3(a).

4.1.1 Alternative Approaches

There are other methods for extracting keyframes in video
processing (e.g. [19]), motion capture and graphics (e.g. [15])
literatures. The advantage of our choice is that it uses the
existing skill reproduction mechanism. This forces the re-
produced skill to be closer to the demonstrations since the
difference between the model trajectory and demonstrations
is minimized. Other methods try to find salient points in a
trajectory, which may or may not be relevant during repro-
duction of the skill.

4.2 Aligning and Clustering

The purpose of this step is to come up with a skill model
given multiple keyframe sequences. We call this model Se-
quential Pose Distributions (SPD).

1 Using velocity and acceleration data along with position data helps
to keep some of the dynamics of the demonstration.
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Fig. 5 Illustration of the alignment and clustering process.

Given several demonstrations of a skill, one common
problem for LfD techniques is to temporally align the demon-
strations before using them to build a model.2 Dynamic Time
Warping (DTW) is a widely used method for aligning two
sequences at a time, whereas we need a general and order-
independent method for aligning multiple keyframe demon-
strations.

For this, we keep an average alignment to which we
align all the sequences in an iterative process and keep an
alignment pool (a set of previously aligned sequences). The
average and the alignment pool are initialized with the low-
est cost pair. After that, the next sequence is selected based
on the lowest pairwise DTW cost between the aligned and
not aligned sequences. The average and the pool are then
updated with this sequence. Iterations are repeated until all
the sequences are aligned.

After aligning, we cluster together any keyframes that
are aligned to the same keyframe from another demonstra-
tion. This can be considered finding connected components
in a graph which connects all keyframes that are aligned
together through DTW. An illustrative example is given in
Fig. 5. The outcome of this step is the learned SPD, which
corresponds to the keyframe means and covariances of each
cluster in sequence. Fig. 3(c) shows the clusters formed from
the keyframe demonstrations in Fig. 3(b).

2 Not all LfD techniques have this problem, e.g. [18].
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4.2.1 Alternative Approaches

There are many alternatives for both aligning and cluster-
ing. The basic requirements are interaction time learning (no
long training duration and scalability with increasing num-
ber of demonstrations) to allow interactive teaching and to
come up with a skill model that can be used to generate mo-
tion. We present a few alternatives in this subsection.

The resulting connected components might be coarser
than the user intended, especially if there is a spatial shift in
the provided keyframes between demonstrations. We have
not run into this problem in practice, but expect it to manifest
itself with end-users. We can break these coarse connected
components (represented as graphs with edge weights in-
versely proportional to the distance between keyframes) down
by utilizing a threshold (e.g. a distance threshold) or using
graph-cut methods. These solutions are at the expense of in-
troducing additional parameters.

Multiple sequence alignment has been studied extensively
in different domains such as biology (e.g. [11]) and speech
recognition (e.g. [22]). Thus there are many methods that
try to tackle the problem. Many methods follow an itera-
tive approach that utilizes a dynamic programming approach
between two-sequences (e.g. [22] or our described method)
or Hidden Markov Models (HMM) (e.g. [12]). HMMs offer
additional features such as inference (e.g. for recognition)
which makes them attractive at the cost of additional com-
putation time. However, our approach was preferred for its
simplicity and the qualitatively satisfactory alignments for
both keyframes and trajectories. Note that optimal multiple
sequence alignment is an NP-Complete problem.

We do not need to explicitly align keyframes first to clus-
ter them and in fact the alignment itself can be the result of
clustering. A basic idea is to either choose the median (more
generalizability) or maximum (more conservative) number
of keyframes amongst the demonstrated sequences, use the
demonstrations with the selected number to initialize the
clusters and map the keyframes in other demonstrations to
the clusters based on distance while respecting the ordering.

4.3 Skill Reproduction

Given the SPD, we use a fifth order spline to reproduce the
learned skill. The spline is used to calculate states (e.g. po-
sitions) given time. This is motivated by the work in [13],
which showed that human point-to-point motions resemble
minimum-jerk trajectories and a fifth order spline is the func-
tion that minimizes the jerk cost.

We fit the spline through the means of the pose distri-
butions.A fifth order spline has 6 unknowns. We use the
start and end positions (obtained from the SPD), velocities
and accelerations,to calculate these. For keyframe demon-
strations, we assume zero initial and final velocities and ac-

celerations, which yields a straight line in the state space.
For trajectory demonstrations, we use the mean velocities
and accelerations at the cluster centers, calculated from the
input trajectories. The other component is the duration be-
tween two keyframe clusters. For keyframe demonstrations,
we assume a constant average velocity to estimate this and
for trajectory demonstrations, we use the average duration
seen in the input trajectories. This splining will result in C2

continuity at the keyframes and C∞ elsewhere3.
In Fig. 3(d) we show the trajectory reproduced with the

described method from the model in Fig. 3(c). Note that
there seems to be non-smooth transition on some of the key-
frames on the generated letter P. This is due to the low ve-
locity and acceleration of the demonstrations.

4.3.1 Alternative Approaches

There are other methods to calculate velocities and accelera-
tions for spline points. A common approach used in graphics
is to estimate them by utilizing previous and next keyframes.
Another approach is to optimize the minimum jerk cost with
respect to the velocities and accelerations given durations
and positions, as done in [26]. Another approach is to learn
a local model for velocities and accelerations instead of us-
ing the average.

We can also use other methods to move in between se-
quential poses (i.e. keyframes). We can pose it as another
optimal control problem in which we relax the condition of
passing through all the keyframes but keep the jerk cost and
additionally penalize deviation from the distribution means
by utilizing the distribution covariances.

With most of the methods, we are going to get a trajec-
tory (e.g. as opposed to a complete policy) in the end. In
practice, a controller is needed to follow this trajectory or
stay close to it as possible while obeying other constraints.
This is not a focus of our work at this point.

5 Data

In this section we describe the two domains used for evalu-
ating our KLfD method.

5.1 Letters in 2D

Part of our evaluation is performed with 2D mouse gesture
data, collected with a Java Applet (Fig. 6). The applet allows
for collecting all three types of demonstrations (TD, KD,
HD). A single click on the applet creates a keyframe, while
dragging the mouse results in a trajectory segment.

3 Ck continuity for a function means that the function’s 1 . . .k deriva-
tives exist and are all continuous
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Fig. 6 Snapshot of the Java applet for collecting 2D mouse gesture
data. The target letter to demonstrate is shown as a light grey template
that is 38 pixels thick.

5.1.1 Skills

We evaluate six different skills corresponding to the letters:
B, D, G, M, O, and P. The letters were chosen to have a
variety of combinations of straight and curved segments. For
each skill we created an image that consists of the template
of the letter. The template is a light gray image of the letter
with an average thickness of 38 pixels.

The goal of the skills in the 2D domain is to stay as close
to the center, or skeleton, of the letter template. The ground
truth skeleton is determined automatically as follows: The
template is converted to a binary image and morphological
thinning operation is applied to it. This creates a one pixel
thick skeletal image (e.g., the red line in Fig. 10). Next,
a starting position is chosen on the skeleton that roughly
matches where the demonstrator begins their demonstrations.

We use a modified depth-first search algorithm to cre-
ate the ground truth trajectory from the skeletal image. Pix-
els on the skeleton are added based on a depth-first search
which explores neighboring skeleton pixels clockwise start-
ing from the bottom-left one. Starting from the initial pixel,
points are added to the trajectory when a pixel is first ex-
plored and when backtracking leads to a pixel. The search
concludes when all the skeletal pixels have been explored.

Our success metric for generated trajectories is the DTW
alignment cost between generated trajectory and the skele-
ton goal path, normalized by the length of the generated tra-
jectory. Since the generated trajectories might have variable
velocity and the goal trajectory has constant velocity, we re-
sample the generated trajectory so that any two consecutive
trajectory points are separated by the same distance. In our
metric we set the distance between any two trajectory points
to be one pixel.

The presented implementation of KLfD utilizes DTW
to learn the SPD skill model (see Sec. 4.2). This seems to
bias the proposed comparison metric at a first glance since
DTW involved in both. However, KLfD is trying to align
with respect to the demonstrations and align only keyframes
(highly sparse with respect to the dense trajectory gener-
ated for comparison). Moreover, the trajectory demonstra-

tions are aligned using DTW prior to being input to the
GMM+GMR method. Thus comparing the skeleton as the
baseline with the proposed metric will not be biased.

5.1.2 Data Collection

The data is collected through the applet shown in Fig. 6 on a
MAC PC using a generic USB optical mouse. Four demon-
strations were collected with each demonstration type (TD,
KD, HD) for each letter. The hybrid demonstrations were
chosen based on intuition: straight portions were shown as
keyframes and curved portions were shown as trajectories
(e.g. see Fig. 11). All demonstrations started at the same
point for each letter, based on intuition on the starting po-
sition that would be optimal for drawing the letter in one
continuous motion. This corresponds to the leftmost of the
bottommost pixels, except in the case of G, which is drawn
starting from the topmost endpoint. All demonstrations were
provided by one of the authors.

5.2 Robot Skills

In our second experimental domain, we evaluate our ap-
proach with table top manipulation skills on a humanoid
robot. The robot platform used in this study is the Simon
humanoid robot (Fig. 1). Simon, is an upper torso humanoid
robot with two symmetric 7 degree of freedom (DoF) arms,
2 DoF torso and 13 DoF expressive head. The arms con-
sist of series elastic actuators that allow safe interaction with
humans and the environment. The right arm of the robot is
kinesthetically guided during the demonstrations. The arms
are gravity compensated to ease kinesthetic teaching.

5.2.1 Skills

We used the following three skills for evaluation:

– Scooping: In this skill, the robot holds an empty spoon
and the teacher guides the arm to scoop as many cof-
fee beans from a bowl as possible in one demonstration
(Fig. 7(a)). This skill is demonstrated in trajectory mode.
The success metric for scooping is the amount of coffee
beans acquired (in grams).

– Pouring: In this skill, the robot holds a spoon full of cof-
fee beans and the teacher guides the arm to pour as many
beans from the spoon to a cup as possible in one demon-
stration (Fig. 7(b)). This skill is demonstrated in trajec-
tory mode. The success metric for pouring is the amount
of coffee beans successfully transferred into the cup (in
grams). The initial content of the spoon is always the
same.

– Placement: In this skill, the robot holds a block and the
teacher guides the arm to place it to a designated area
(Fig. 7(c)) with KD.
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(a) Scoop (b) Pour (c) Place

Fig. 7 The three robot skills used in our evaluation.

robot

: Demonstrations

: Reproductions

Fig. 8 Setup for data collection and evaluation on the robot.

5.2.2 Data Collection

The setup for collecting demonstrations is illustrated in Fig. 8.
Each skill is demonstrated for three goal locations (the bowl
location for scooping, the cup location for pouring and the
designated target area for placement). Two demonstrations
per location are recorded, resulting in a total of 6 demon-
strations per skill. All demonstrations were provided by one
of the authors. A different goal location is used for the eval-
uation of the reproduced skill.

The state recorded during demonstrations is time stamped
coordinates and rotation quaternions of the end-effector with
respect to the robot base frame, which is 8-dimensional.
We pre-process the trajectory demonstrations before apply-
ing the methods described in Sec. 5. The demonstrations
are converted to the object frame and filtered using a Gaus-
sian filter with the cut-off frequency chosen as 2Hz. The
frame transformation is necessary such that there is corre-
spondence between multiple demonstrations and filtering is
necessary since the teacher demonstrations are inherently
noisy. The frequency is chosen empirically based on the fre-
quency amplitude spectrum of the data.

6 Results

In this section we provide qualitative and quantitative eval-
uations of the KLfD learning framework. We first provide
example outcomes of learned SPD models on both domains.
Next we provide a comparison of KLfD with an existing
LfD technique on trajectory demonstrations. Finally we com-
pare the outcomes of SPD models when used with three dif-
ferent types of input demonstrations (TD, KD and HD).

As a baseline for comparison, we chose the LfD method
described in [10]. In this method, a Gaussian Mixture Model

(GMM) is fit to the data using the Expectation-Maximization
(EM) algorithm. Then, Gaussian Mixture Regression (GMR)
is used for skill reproduction from the model. There are mul-
tiple reasons for this baseline choice. This method can be
trained with a low-number of demonstrations and training
can be done in interaction time. It can handle cyclic skills
(assuming constant number of cycles) as well as point to
point skills. Moreover, the GMR portion generates smooth
trajectories. We use time-stamped positions as our states and
query the GMR with a desired time vector to get a desired
trajectory. We refer to this method as GMM+GMR. The tra-
jectories are aligned in time using DTW prior to being input
to this algorithm.

6.1 Sample outcomes

6.1.1 Letters

Fig. 9 shows the reproduced skill outcomes that result from
KLfD and GMM+GMR for trajectory type input demonstra-
tions on a subset of three letters in the 2D domain. Note that
there seems to be a piece-wise linear effect. This is due to
low velocity and acceleration and sharp turns inherent in the
provided demonstrations (see Fig. 3(a)). Both approaches
produce qualitatively similar outcomes given the same tra-
jectory input data.

This baseline approach is not designed to handle sparse
trajectories so we only provide KLfD output for keyframe
and hybrid input data. Fig. 10 shows the outcomes of SPD
skill models for keyframe type input demonstrations on all
six letters in the 2D domain. Note that these models are ob-
tained from multiple demonstrations (4). We see that the re-
sulting trajectories resemble the intended letters. The piece-
wise linear appearance is due to our zero initial and final
velocity assumption on keyframes. Comparing Fig. 10 and
the top row of Fig. 9, we see that trajectory input results in
learned models that look more similar to the intended letters,
since the demonstrations themselves contain more informa-
tion about the curved parts of the skills.

Fig. 11 shows the set of four hybrid demonstrations pro-
vided for the letter P and the SPD outcomes. Our KLfD
method succeeds in learning an appropriate SPD model, de-
spite the non-uniformity of the demonstrations. It can be ar-
gued that the resulting letter P is more similar to the intended
one than any of the Ps in Fig. 9 or Fig. 10.

6.1.2 Robot skills

Fig. 12 shows the demonstrations provided for the scooping
skill and the trajectories reproduced using GMM+GMR and
SPD models. Two representative dimensions of the state-
space are shown: the vertical dimension and the angle-component
of the quaternion. The top row corresponds to pre-processed
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Fig. 10 Outcomes of KLfD with keyframe demonstration inputs for 6 skills in the 2D letter domain. The thin red line shows the skeleton of the
letter that the teacher tries to demonstrate using the mouse. The thick lines show the reproduced trajectory.

Fig. 9 Outcomes of KLfD (top row) and a baseline trajectory learning
approach (GMM+GMR) (bottom row) with trajectory demonstration
inputs for 3 skills in the 2D letter domain. The thin red line shows
the skeleton of the letter that the teacher tries to demonstrate using the
mouse. The thick lines show the reproduced trajectory.

Fig. 11 Outcome of KLfD for hybrid demonstration inputs for the let-
ter P. The red line shows the skeleton of the letter and the blue dots
show the trajectory reproduced based on the learned skill.

teacher demonstrations and the extracted keyframes. Note
that the data is highly varied and not aligned in time. The
middle row shows the aligned trajectories (as described in
section 4.2), the learned GMM and the resulting trajectory.
The bottom row shows the aligned keyframes, the SPD model
and the resulting trajectory. The algorithm for alignment is
the same for trajectories and keyframes but the input data is
different.

The vertical dimension (left column in Fig. 12) of the
scoop captures the dip into the bowl. It can be argued that the
variance is lower in the dipping portion. This is from the fact

that all the demonstrations had this in common, i.e. this was
the important part of the skill. Note that both of the methods
generated similar resulting trajectories and captured the low
variance of this portion.

A rotation quaternion represents a rotation around an
axis. Specifically, the angle-component is the cosine of the
half of the rotated angle. A single component of the quater-
nion by itself is not enough to capture all the rotation infor-
mation of the end effector but gives a rough intuition. The re-
sulting trajectories (right column in Fig. 12) show that there
is nearly a monotonic change in this angle which is consis-
tent with the scooping skill.

Fig. 13 shows the 2D projection of the keyframe demon-
strations, the SPD and the generated trajectory for the place-
ment skill. Note that the initial and final clusters have higher
variance and variance lowers as the skill approaches the place-
ment position. The algorithm identified 5 important regions
for the skill. We can interpret these as the start and end of the
skill, pre-placement position, safe retraction position and the
placement position. During the placement demonstrations,
the teacher was able to take his time to correctly align the
block with the placement position, which was possible to
due to the keyframe demonstrations.

6.2 Comparison with trajectory-based methods

Our framework accommodates trajectory demonstrations by
converting them to keyframe demonstrations, as described in
section 4.1. This can be viewed as a loss of information. In
order to show that this loss does not effect the performance
of the learned skill we first focus on trajectory demonstra-
tions as the input, and quantitatively evaluate our framework
in comparison to the baseline GMM+GMR.

6.2.1 Letters

A comparison of performance on the six letter skills is shown
in Fig. 14(a). The success metric is alignment cost, as de-
scribed in Sec. 5.1. For all six letters we find that SPD mod-
els produce letters that are closer to the template (i.e. have
lower alignment cost with the template skeleton). In addi-
tion, we see that both methods produce skills that are more
successful than the provided demonstrations of the skill.
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Fig. 12 The demonstrations and the learned trajectories for the x (verticals)) and the qw (angle representation of the quaternion) dimensions of the
scoop skill. Vertical axes correspond to the dimensions and horizontal axes correspond to time. Top row: Filtered and transformed (with respect
to the object) raw trajectories and the extracted keyframes (dots). Middle Row: Aligned demonstrations and the learned trajectory (red) using
GMM+GMR. The covariance between the dimensions and time is represented by the light blue ellipsoids and x-marks represent the centers of the
GMMs. Bottom Row: Aligned keyframes (dots, dashed lines are to ease visualization) and the learned trajectory (red) using the keyframe method.
The x-marks denote the means of the pose distributions.
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Fig. 13 The 2D projection of the placement demonstrations. The as-
terisks mark the demonstrated keyframes. The dashed-lines are given
for visualization purposes. The ellipses represent the covariances and
x marks represent the means of the pose distributions and the red solid
line is the reproduced trajectory.

(a) (b)

Fig. 14 Skill success in the 2D letter domain measured with costs for
alignment with the template letter (lower cost means better alignment).
(a) For skills learned with GMM+GMR versus with KLfD using trajec-
tory type input demonstrations. (b) For skills learned with KLfD using
three different input demonstration types. Note the KLfD bars in (a)
are equivalent to Trajectory bars in (b).

6.2.2 Robot Skills

We compare KLfD and GMM+GMR on two robot skills:
scooping and pouring. The success metric is bean weight, as
described in Sec. 5.2. Demonstrated trajectories were played
back on the robot three times per respective location (a total
of 18 demonstrations) and the success metric is recorded for
each. These results can be seen in Table 1 in the Demonstra-
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Table 1 Comparison of the success of (i) provided demonstrations,
(ii) trajectories learned with KLfD and (iii) with GMM+GMR on two
skills. Values indicate weights in grams and standard deviations are
given in parentheses. Note that demonstrations have 18 samples and
learned models have 10.

Scoop Pour
Demonstrations 38.4 (7.3) 26.2 (5.8)

Learned skills (KLfD) 41.5 (2.0) 23.0 (1.7)
Learned skills (GMM+GMR) 37.8 (1.4) 27.8 (2.3)

(a) Weight of scooped coffee beans

(b) Weight of poured coffee beans

Fig. 15 Box-plots for the skill success measures comparing (i) re-
played teacher demonstrations (18 samples), (ii) trajectory obtained
with the model learned with the GMM+GMR method (10 samples)
and (iii) with the KLfD method (10 samples) for two skills.

tions row. This is a sanity check on the data, showing that
robot has seen successful demonstrations, so we expect the
learned models to perform similarly.

The skills are learned with both methods and the repro-
duced skill is performed at a different target location (the
red cross in fig. Fig. 8). Each learned model is executed 10
times. The results are reported in Table 1 and the descriptive
statistics of the results can be seen as box-plots in Fig. 15.

These results show that the performance of both learning
methods have success similar to the demonstrations. More-
over, they are similar to each other. In scooping, KLfD re-
sulted in a more successful SPD model and vice-versa for
pouring. The methods were not tuned with respect to any
skill and parameters were chosen to be generic. This shows
that our method is on par with a state of the art technique at
building models from trajectory demonstrations.

Note that we make no claim of providing significant im-
provements over the GMM+GMR method. However, we get
comparable results with a method that allows for keyframe
or hybrid input data in addition to handling trajectories.

6.3 Comparison of demonstration types

Next, we look at the impact of input type (TD, KD, HD) on
skill success in the 2D letters domain. This comparison, in
terms of the alignment costs with the template skeleton, is
shown in Fig. 14(b). We observe that hybrid demonstrations
result in the best performance for the letters P, B and D, fol-
lowed by keyframe demonstrations. Hybrid demonstrations
have an advantage over keyframe demonstrations due to the
ability to provide the curved parts of the letters more accu-
rately. Trajectory demonstrations have the highest costs in
these skills. This is mainly due to the difficulty of drawing a
straight line when giving trajectory demonstrations.

For the letter O we see that trajectory demonstrations re-
sult in the best performance. This is again intuitive since this
letter is entirely curved. At the other end of the spectrum,
the drawing of letter M consists of only straight movements.
As a result, we find that a pure keyframe demonstration re-
sults in the best alignment. For the hybrid demonstrations of
these two letters, we intentionally tried to balance the use of
keyframe and trajectory segments, even though the usage of
hybrid demonstrations for these letters is less intuitive. For
the letter G we see that trajectory demonstrations perform
best, since the letter is predominantly curved.

Overall we see that the best KLfD performance results
are achieved when the demonstration type is suited for the
skill. In the 2D letter domains this implies using trajectory
demonstrations for O and G, keyframe demonstrations for M
and hybrid demonstrations for P, B and D. This confirms our
intuition about the utility of being able to provide a variety
of demonstration types to handle a range of skills.

7 Discussion

Our previous work, [3], motivated the alternative input modes,
keyframe and hybrid demonstrations, for kinesthetic teach-
ing in LfD. In this article we develop a framework for learn-
ing from these alternative types of demonstrations. One of
the main strengths of the framework is that it handles all
three types of input demonstrations. This allows a human
teacher to use the input mode that is most comfortable to
them or that they see most suitable for a given skill. In ad-
dition, this allows them to change their input mode over
time, e.g. show some trajectory demonstrations and some
keyframe demonstrations for the same skill.

Hybrid demonstrations are particularly strong as they al-
low the demonstration to be adapted to the particular parts
of a skill. Typically skills involve multiple components. For
instance it is natural for scooping and pouring to be demon-
strated together. Parts of the skill that requires a complex
motion of the spoon to collect the beans or to pour them
accurately into the cup are suited for trajectory demonstra-
tions. Whereas, the parts before, after or in between these
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movements are more suited for keyframes. This is analo-
gous to the 2D skills corresponding to the letters P, B, D
we considered in Sec. 6.3. We found that KLfD produces
the best results with hybrid demonstration inputs for these
skills. The hybrid demonstrations allow for traditional tra-
jectory demonstrations, so there is an added benefit with hy-
brid demonstrations instead of a trade off.

We also have anecdotal evidence from the AAAI 2011
Learning from Demonstration Challenge that end-users come
up with their own styles of teaching and learn and adapt
quickly to the skill.4 We believe that hybrid demonstrations
will be beneficial for end-users to program their robots. Val-
idating this with a user study is the next step in our future
work with KLfD and hybrid demonstrations.

Sequential Pose Distributions (SPD) skills are modeled
from keyframes. Thus trajectory or hybrid demonstrations
need to be converted to keyframe demonstrations. It is im-
portant to ensure that this conversion is not detrimental to
the success of the learned skill. Our results showed KLfD
can learn SPD models that have performance on par with
existing methods.

We also note some of the current limitations of KLfD.
As mentioned throughout Sec. 4, there are several parame-
ters that need to be chosen empirically. In this article these
were domain specific. We found that one set of parameters
worked well with multiple skills for a given domain. An-
other concern is that the zero velocity and acceleration as-
sumption for demonstrated keyframes might be too restric-
tive for certain skills. Moreover, the current version of the al-
gorithm does not leverage the pose distribution covariance.
We further pointed out other methods that can be used in
place of the steps presented in Fig. 4.

We have introduced SPD as our skill model. In this work,
they consist of pose means and variances, velocities and ac-
celerations. We utilize the KLfD pipeline to learn the SPD.
However, there can be other uses of SPDs such as construct-
ing them by hand for certain robot behaviors or animation
(in place of traditional keyframes).

8 Conclusion

We present a Learning from Demonstration framework that
accommodates two types of novel input demonstrations, key-
frame and hybrid demonstrations, along with traditional tra-
jectory demonstrations. The usability and utility of these
novel types were motivated in our previous work. In this
article we present methods for learning from all three types
of demonstrations in a unified framework. Our methods are
based on converting all types of demonstrations into key-
frames. Then, the keyframes are aligned and clustered and
the skill is reproduced from the obtained clusters. We call

4 See e.g. http://www.youtube.com/watch?v=5lVxOKSeYsk

this framework Keyframe-based LfD (KLfD) and the result-
ing skill model as Sequential Pose Distributions (SPD).

We demonstrated KLfD performs on par with a conven-
tional LfD technique on trajectory demonstrations. This im-
plies that KLfD is a viable alternative even for conventional
demonstration types, while accommodating new demonstra-
tions types. We also showed that KLfD is most powerful
when the demonstration type is suited to the particular skill
being demonstrated. This highlights the strength of hybrid
demonstrations that can be suited for any type of skill.
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