
108 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 2, NO. 2, JUNE 2010

Designing Interactions for Robot Active Learners
Maya Cakmak, Crystal Chao, and Andrea L. Thomaz

Abstract—This paper addresses some of the problems that arise
when applying active learning to the context of human–robot in-
teraction (HRI). Active learning is an attractive strategy for robot
learners because it has the potential to improve the accuracy and
the speed of learning, but it can cause issues from an interaction
perspective. Here we present three interaction modes that enable a
robot to use active learning queries. The three modes differ in when
they make queries: the first makes a query every turn, the second
makes a query only under certain conditions, and the third makes
a query only when explicitly requested by the teacher. We conduct
an experiment in which 24 human subjects teach concepts to our
upper-torso humanoid robot, Simon, in each interaction mode, and
we compare these modes against a baseline mode using only passive
supervised learning. We report results from both a learning and an
interaction perspective. The data show that the three modes using
active learning are preferable to the mode using passive supervised
learning both in terms of performance and human subject prefer-
ence, but each mode has advantages and disadvantages. Based on
our results, we lay out several guidelines that can inform the design
of future robotic systems that use active learning in an HRI setting.

Index Terms—Active learning, human–robot interaction.

I. INTRODUCTION

O UR research targets social robots situated in dynamic
human environments such as general assistants in homes,

schools, and hospitals. In these scenarios, it would be difficult
for a designer to preprogram every possible task that the robot
could perform. Our research is about developing ways for
these robots to learn the necessary tasks and skills from end
users—socially guided machine learning (SG-ML). Because
we cannot always expect these users to have extensive expe-
rience with machine learning or robotics, we need to design
algorithms and systems that take advantage of the ways that
they naturally approach the task of teaching.

Passive and active supervised learning are two machine
learning paradigms that can enable a robot to learn from a
human. In passive supervised learning, the teacher chooses and
labels all of the examples for the learner. In the active learning
setting, the learner can select examples to learn from through
queries to the teacher for labels. In both cases, the human
teacher serves as the oracle for the robot learner by providing
labels for example data. However, the approaches have vastly
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different implications in a human–robot interaction (HRI)
setting. In particular, the queries of an active learner embed the
robot in a tightly coupled dyadic interaction.

In this work, we look at the kind of input that human partners
are capable of providing and the kind of feedback that they enjoy
receiving. Our focus is on designing systems for users who are
nonexperts in machine learning and robotics. We examine the
teacher’s perception of the learning process in order to better
understand how to negotiate the balance between learning ac-
curacy, learning speed, and interaction smoothness. This work
provides a foundation for developing active learning systems
that can be successfully deployed on robots in everyday human
environments.

In a previous pilot study [1], we examined the relationship be-
tween active learning and transparency. Transparency describes
the ability of the robot to communicate internal state to an ex-
ternal observer. Our hypothesis was that active learning could
serve as a transparency mechanism to human teachers by high-
lighting areas in the space of possible examples about which the
learner lacked confidence. Our preliminary results showed that
such transparency was more complex than we had initially pre-
dicted. Following that pilot study, we maintained the hypothesis
that a robot using active learning could achieve more accurate
and faster learning as compared to a passive learner, but we also
considered that using active learning could lead to problematic
balance of control from an interaction perspective. In particular,
we hypothesized that the naïve approach of using a constant
stream of queries could be detrimental to a human teacher’s en-
joyment or lead to worse mental models due to lack of engage-
ment—in some ways decreasing the transparency of the learner.

In this experiment, 24 human subjects each taught four con-
cepts to our upper-torso humanoid robot Simon. The concepts
corresponded to four interaction modes that we designed and
implemented: supervised learning (SL), active learning (AL),
mixed initiative (MI), and any questions (AQ). The SL mode
is a passive supervised learner that does not use queries. We
refer to the last three as interactive modes because they include
queries in some form. AL represents a naïve active learner that
queries every turn. MI is an active learner that waits for certain
conditions before querying. In the AQ mode, queries are only
given when solicited by the human teacher. Not surprisingly,
we found that the three interactive modes outperformed super-
vised learning from a machine learning perspective, in both final
accuracy and number of labeled examples required to achieve
accurate models. Additionally, we found that people preferred
the interactive modes over the passive supervised learning con-
dition. When the robot asked questions, the subjects found it
to be more intelligent, more engaging, and easier to teach. We
also report several observations related to the transparency of the
learning process, the balance of control in active learning, and
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the compliance of the human partner in answering the robot’s
queries. These results should inform the design of future robot
active learners that are situated in human environments.

II. BACKGROUND

Our approach to SG-ML is informed by child development
and the human learning process. The field of situated learning
studies the social world of a child and how it contributes to
the child’s development [2]. In a situated learning interaction,
a good instructor maintains a mental model of the learner’s
understanding and structures the learning task with appropriate
feedback and guidance. The learner contributes to the process
by expressing internal state via communicative acts (e.g.,
asking questions or expressing understanding, confusion, and
attention) [3], [4]. This is a reciprocal and tightly coupled
interaction in which the learner actively influences the teacher,
thereby improving his own learning environment. This situated
learning process stands in contrast to typical scenarios of ma-
chine learning, which are often neither interactive nor intuitive
for the human partner.

Leveraging human input has received considerable attention
in both the machine learning and robotics communities. Much
prior work deals with the scenario in which a machine learns
by observing human behavior [5]–[7]. Other work has focused
on how a machine can learn tasks from human instruction [8],
[9], with human advice [10], [11], or through intervention on
the learner’s actions during the learning process [12].

Active learning is a relatively recent learning paradigm in
which the learner chooses the examples from which it is going to
learn [13]–[15]. It depends on the existence of an external oracle
to provide the labels for queried examples. Active learning tech-
niques are often evaluated in terms of the reduction in number
of labels required to learn a sufficiently accurate classifier over
passive supervised learning. There is overwhelming evidence
that active learning can achieve significant gains in this respect,
especially in applications involving text, image, and video clas-
sification where label acquisition is costly, but unlabeled data is
abundant. However, most performance gain results reported in
the literature are obtained with an automated oracle rather than
an actual person [16]–[18].

Some user studies have been performed to evaluate active
learning systems for estimating the cost of different detail levels
of annotations or queries [19], [20], the feasibility of different
types of queries (e.g., feature queries or multiple-instance
queries) [21], or the effectiveness of different user interfaces
while using nonexpert annotators as oracles [21], [22].

The active learning setting in the study presented here is fun-
damentally different from other evaluations of active learning
because the active learner receives labels through a dynamic
teaching–learning interaction rather than through monotone
query labeling or annotation. In our scenario, the person is
trying to teach the robot independent of whether the robot
makes queries. The learner can thus, gain information without
making a query, and the learner is not guaranteed that the
teacher will answer its query. This scenario raises a different set
of questions, such as deciding when to make a query in order to
maximize information gain while maintaining the engagement
of the teacher.

Fig. 1. Simon robot interacting with a teacher.

Research on interaction design within the human–computer
interaction community is also relevant for our work. It is pos-
sible to draw parallels between some of the principles we men-
tion in this paper and the principles proposed by Horvitz for
designing mixed-initiative user interfaces [23].

There is some prior work on using active learning with
humans. One system showed confidence-based active learning
with (nonsocial) human labelers [24]. Similarly, Lopes et al.
used active learning to select the states in which an expert
human should be queried for an appropriate action [25].
Rosenthal et al. investigated how the accuracy of a human
teacher’s answers to a robot’s questions could be improved by
augmenting the questions with information about the robot’s
state [26].

Prior work has tended to look at the problem of human-in-the-
loop active learning from the perspective of the machine learner.
In this work, we also take the perspective of the human partner.
This approach uncovers several issues surrounding the design
of active learning systems in the domain of HRI.

III. APPROACH

A. Robot Platform

The robotic platform for this research is “Simon,” an
upper-torso humanoid social robot with two 7-DOF arms,
two 4-DOF hands, and a socially expressive head and neck,
including two 2-DOF ears with full RGB spectrum LEDs
(Fig. 1). We are developing the Simon platform specifically for
face-to–face human–robot interaction. In our task scenarios,
the robot works alongside or across from a human partner at a
tabletop workspace. The robot has the ability to perform simple
gestures (e.g., pointing, head nods and shakes) to communicate
about objects that the human can use for teaching.

Our learning system is implemented within the C6 soft-
ware system (see [27]), which has a specific pipeline for
triggering robot actuations from sensory inputs. In C6, a robot
is equipped with various sensors such as cameras for vision
and microphones for speech recognition. At every time step,
the robot receives observations from these
sensory processes. The perception system is a set of percepts

. Each is an atomic classification and
data-extraction unit that models an aspect of each observation
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from the sensory system by returning a match probability
such that , where is a match value. The
percept provides a useful level of abstraction for reducing the
dimensionality of incoming sensory information.

The belief system maintains the belief set by integrating
these percepts into discrete object representations (based on
spatial relationships, and various other similarity metrics or
tracking mechanisms). Belief objects that detail the perceived
state of the world are sent to the action system for decision
making. The action system is structured as action groups of
hierarchical action tuples requiring preconditions, executa-
bles, and postconditions. After a high-level action is selected,
the lower level joint trajectories are transmitted to the motor
module controlling the physical robot.

B. Domain Description

In this work, Simon’s learning task involves colorful paper
cutouts, which we refer to as objects. Each object has a color
attribute with four possible values (pink, green, yellow, or or-
ange), a shape attribute with three possible values (square, tri-
angle, or circle), and a size attribute with two possible values
(small or large), for a total of 24 possible unique objects.

Simon learns from labeled examples of object configurations.
A configuration consists of a top and a bottom object and is
referred to as a compound object. Each compound object has
a total of six features:

, and . Top and bottom are from Simon’s
perspective. The distance between objects and the orientation
of objects are ignored. Simon’s workspace contains exactly one
of each object, so there are 552 (24 23) possible compound
objects. The set of all possible compound objects is referred to
as the instance space.

Simon’s workspace is a table covered by a black tablecloth.
The 24 objects are arranged in six separate groups on the
perimeter of this table. Each group contains objects of the same
size and shape, but of varying color. The center of the table
immediately in front of Simon is the demonstration area and
is demarcated to the human with a rectangular tape boundary
(Fig. 1).

C. Perception

Simon expects to find exactly two objects in the demonstra-
tion area whenever a label is provided by the teacher. Objects
lying on a table in front of Simon are detected through a fixed
overhead camera and segmented using background subtraction.
The shape of the object is recognized by the number of cor-
ners of the simplified polygon contour of the segmented object.
The polygon simplification algorithm considers polygons with
up to eight corners. Therefore the circle is always perceived to
have eight corners, while the triangle has three and the square
has four. Size is recognized based on the area within the con-
tour and color is recognized using the color histogram of the
segmented object. The objects are localized in robot world co-
ordinates using a fixed homography from the image plane to the
table plane.

In order to reduce errors, the output of the vision system
is monitored by an experimenter during the interaction. If the
detected configuration is inconsistent with the real configura-

tion, the experimenter asks the subject to adjust the positions
of the paper cutouts until the vision output is correct. This is
usually done by moving the pieces closer to the center of the
demonstration area or moving overlapping pieces away from
each other. Only correct configurations are processed by the
robot and logged.

The perception of speech commands is also directly con-
trolled by the experimenter rather than using a speech recog-
nition system in order to avoid errors. There are four possible
sentences that the subject can say to the robot. The experimenter
thus presses one of the four corresponding buttons on a graph-
ical interface when the subject utters a valid sentence. The com-
mands and the sentences are described in Section V-A. This is
the only input provided by the experimenter in this experiment;
everything else is autonomous.

D. Actions

Simon uses speech synthesis and gaze directions to interact
with the human teacher. There are four types of actions that
Simon can perform.

a) Turn Passing: Simon looks up and blinks his ears to indi-
cate that he is ready for another example.

b) Acknowledgement: To acknowledge that the example
given by the teacher has been processed, Simon gives a verbal
confirmation such as “okay” or “thank you.”

c) Answering: Simon uses a gesture (head nod or shake) in
conjunction with speech (“Yes, this is a house.” or “No, it’s
not.”) to respond to test questions.

d) Making a Query: Simon can request labels for specific
compound objects. He does this by requesting to replace the
top or bottom piece of the compound object that is currently on
the demonstration area. The request is communicated through
speech synthesis using a sentence such as, “Can you replace the
bottom piece with a large pink circle?”. During this utterance,
Simon also gazes towards the group on the workspace that con-
tains the requested object (large circles) and changes the color
of his ears to the color of the requested object (pink).

E. Interaction

In this study, subjects teach concepts to Simon through a
turn-taking interaction. First, the teacher prepares a compound
object in the demonstration area. Then, the teacher can do one
of two things: 1) label the compound object’s membership in
the concept that is being taught as positive or negative; or 2)
test Simon on the compound object by asking him to predict
a label. The teacher accomplishes 1) or 2) by saying sentences
from a predefined grammar. When a sentence is heard, Simon
gazes towards the demonstration area and perceives the com-
pound object. If the teacher provides a label, Simon learns from
this new labeled example and then acknowledges the example. If
the teacher tests Simon, Simon responds with a predicted label
based on what he has learned so far. The teacher’s next turn
starts when Simon blinks his ears indicating that he is ready to
see another example.

In the interactive modes, Simon may make a query as de-
scribed in Section III-D after the person provides a labeled ex-
ample. In these cases, Simon blinks his ears after finishing the
query.
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TABLE I
CONCEPTS

IV. LEARNING

This section describes the concept learning problem and the
query mechanism for active learning.

A. Concepts

The learning task in this experiment is to obtain a general
compound object representation from examples of members
and nonmembers of a concept. A concept is represented as
a monotone conjunction of compound object attribute values
that must hold true to be a member of that concept. For in-
stance, a HOUSE is a compound object that has a pink and
triangular top piece, and a square bottom piece, as shown in
Table I. The size of either piece and the color of the bottom
piece do not matter. Thus, the concept HOUSE is repre-
sented with the conjunction

. This can also be denoted
with where means that the
value does not matter, assuming the order of features to be as
given in Section III-B.

In this experiment, Simon is tasked with learning the four
different concepts described in Table I. All concepts are chosen
to have three terms. The actual number of possible instances for
each concept differs due to the number of values that features
can have and the uniqueness of objects.

B. Concept Learning

A concept learning algorithm produces a hypothesis based on
a set of labeled examples consistent with an unknown target con-
cept. In this experiment, the learner’s hypotheses are of the same
form as the target concepts described in Section IV-A, there-
fore exact learning is possible. The learner tries to estimate the
target concept by producing a hypothesis that is consistent with
the given examples. The learner chooses its hypothesis from the
hypothesis space—the set of all possible hypotheses.

In this experiment, concepts are learned using a version
space approach. The version space is traditionally defined as

the subset of the hypothesis space that contains hypotheses con-
sistent with all labeled examples provided to the learner [28].
In order to accommodate noisy data and errors in labeling, we
quantify the consistency of any given hypothesis as the number
of seen examples with which it is consistent, and we define the
version space to be the set of hypotheses having the highest
consistency value among all members of the hypothesis space.
This relaxes the requirement that hypotheses be consistent with
every previously seen labeled example, allowing the learner to
recover from labeling mistakes or perception errors.

The learning algorithm updates the consistency value of each
hypothesis after receiving a new example and reexpands the ver-
sion space. This algorithm is summarized in Algorithm 1.1 We
provide an example in Table II to illustrate how the version space
changes as labeled examples are received.

Algorithm 1 Concept learning algorithm. Where is the
set of all hypotheses, and is the version space.

loop

Obtain new labeled example

for do

if is consistent with then

end if

end for

Initialize

for do

if then

end if

end for

end loop

C. Label Prediction

At any time during learning, the current version space can be
used to predict the label of a new instance by serving as a com-
mittee. The decision is based on the majority in the predictions
of the hypotheses in the version space. The confidence in the
prediction is defined as the distance of the majority label to the
average label. Thus, for the degenerate case of having no ma-
jority label, the confidence is 0. Table III shows examples of la-
bels predicted by the version space committee after the learner
has seen the three labeled examples shown in Table II. In the
first example, all of the hypotheses in the version space agree on
the label of the example, so the confidence is 1. In the second

1For efficiency, our implementation does not expand the complete hypothesis
space, but rather considers all hypotheses that are consistent with positive ex-
amples. A generalized version of the algorithm is presented here for clarity.
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TABLE II
CONCEPT LEARNING FOR HOUSE: PROGRESS OF THE VERSION SPACE AS NEW

LABELED EXAMPLES ARE PROVIDED

TABLE III
LABEL PREDICTION FOR HOUSE

example, six out of eight hypotheses label the example as a non-
member, so the predicted label is negative, and the confidence
is smaller than 1. In the last example, there are equal votes for
positive and negative, so the confidence is 0, and the predictor
outputs no label.

D. Active Learning of Concepts

Active learners have a mechanism for selecting examples to
be labeled by an oracle [15]. Ideally, these examples are max-
imally informative to the learner and thus, significantly reduce
the number of required labels to create a good model.

For Simon’s active learning mechanism, we implemented
query-by-committee for example selection [29]. This method
uses a committee of competing hypotheses and selects the
example that results in maximal disagreement between the

hypotheses in terms of predicted labels. The committee in our
implementation is the version space. The effect of iteratively
labeling examples selected by the committee is to prune away
as much of the committee as possible until only one correct
hypothesis is left, reducing the entropy of the committee. Note
that there often exists more than a single example that results
in maximal disagreement of the committee.

As an example, consider the state of the version space after
seeing the three labeled examples given in Table II. As shown in
Table III, some of the examples in the instance space are classi-
fied with full confidence. For other examples, the version space
is split equally in terms of the predicted label—that is, half of
the hypotheses are inconsistent with the example. When the ver-
sion space is split in such a manner, the result of labeling the ex-
ample is to halve the size of the version space. In other words,
there is maximal disagreement on this example, and therefore it
is a good query candidate. It is also a valid query because it dif-
fers from the last presented example by only the bottom object.

Sometimes examples cannot be queried because Simon can
only request that the human change the current example by a
single object, either the top or the bottom. If there are no useful
queries that differ by a single object, Simon will attempt to query
the preferred example in two requests. The intermediate com-
pound object that is requested first can therefore, be uninforma-
tive for learning. We designed Simon’s queries in this manner to
simplify the interaction and to keep the cognitive load reason-
able for the human teacher. A secondary effect of this choice
is that the human teacher has the opportunity to perform better
than the active learner by selecting next examples that vary both
the top and the bottom objects.

V. EXPERIMENT

For this experiment, we had 24 subjects teach four concepts
to the Simon robot. Each subject taught Simon in four different
interaction modes. We describe the conditions and experiment
protocol in this section.

A. Teaching Task

Subjects were tasked with teaching Simon the four different
concepts shown in Table I in four separate teaching sessions.
They were told that Simon’s memory was wiped before every
session and that they had to teach from scratch.

In order to teach Simon, subjects were told to arrange a com-
pound object in the demonstration area from Simon’s perspec-
tive and say one of three possible sentence types.

• [Simon], this is a .
• [Simon], this is not a .
• [Simon], is this a ?
Taken in conjunction with an example compound object, the

first of these sentences represents a positive label, the second
represents a negative label, and the third represents a test
question. An experimenter used a graphical interface to submit
the appropriate speech percept to Simon’s perception system.
Simon would then process this statement and respond to it.
Subjects were instructed to listen to Simon’s verbal response
and to wait for Simon to blink the lights on his ears before
continuing. Subjects were also told to put any pieces used for
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TABLE IV
INTERACTION MODES

demonstrations back in their original locations in the workspace
when not currently in use.

A whiteboard near Simon provided reminders about the con-
cept representation and the types of sentences that the teacher
could say. This was preferred over giving the human a piece of
paper with instructions so that people would look up towards
the robot rather than fixate on the piece of paper.

Subjects were instructed to continue teaching each concept
until they were satisfied that Simon had learned the concept well
or thought that Simon had stopped making progress.

B. Interaction Modes

We implemented four different interaction modes, SL, AL,
MI, and AQ.

1) SL—The robot makes no queries during this mode. The
human teacher uses positive labels, negative labels, and
test questions to teach the robot. This is the baseline from
which the next three modes are extended.

2) AL— Simon makes a query after every positive or negative
label from the human teacher to influence the teacher’s
next example.

3) MI—Simon decides to make a query only under two con-
ditions: 1) immediately following an uninformative label
from the teacher; or 2) when the percentage of the instance
space that is uninformative exceeds a threshold, which we
set to 0.8.

4) AQ—Only during this mode, the teacher is allowed to use
an additional sentence:
• [Simon], do you have any questions?
This sentence is meant to refer to the current example in the
demonstration area. Only after this sentence is used by the
teacher does Simon look at the current example and make
a query.

All subjects taught Simon once in every interaction mode.
Table IV shows which concept was taught for each mode.

We call the last three modes the interactive modes. Every sub-
ject began by teaching in the SL mode as a baseline, but the order
of the interactive modes was varied. Each of the six possible or-
derings of the interactive modes was represented four times in
our data.

Between the SL session and the first interactive session, the
experimenter explained to the subject that Simon was able to
request specific examples by asking for either the top or the
bottom piece in the demonstration area to be switched with a
different piece. The experimenter also emphasized that the sub-
ject was not required to do what Simon asked for if they did not
want to. We did not ask the human teacher to comply strictly
with the robot’s queries because we were also interested in how
well people would naturally comply with the queries in different
interaction modes.

C. Survey Questions

Subjects were asked to answer questions in a web-based
survey. After each teaching session, while the interaction was
still fresh in the subjects’ head, they were asked to answer the
following questions about that specific teaching session.

• Who had more control over Simon’s learning process (1–7
rating scale)?
— You had complete control;
— Equal control;
— Simon had complete control.

• How well do you think Simon learned this object? Please
indicate the percentage of future objects you think Simon
will be able to identify correctly (0–100).

• What was your general teaching strategy for this object?
• How did you decide when this learning session should end?
After teaching in all of the interaction modes, subjects an-

swered the following questions asking them to compare the four
interaction modes.

• How difficult was it to teach each object (1–7 rating scale)?
— Extremely easy;
— Extremely difficult.

• While teaching each object, how clear was your mental
model of what Simon knew already and what he still had
to learn (1–7 rating scale)?
— Extremely vague;
— Extremely clear.

• How intelligent did the robot seem during each object
learning session (1–7 rating scale)?
— Extremely unintelligent;
— Extremely intelligent.

• How enjoyable was each method of teaching (1–7 rating
scale)?
— Extremely disagreeable;
— Extremely agreeable.

• Of the following two sessions, which teaching method did
you prefer overall? (Forced choice)
— ALIEN
— ICE CREAM

Each of these questions included an optional comment box
that was labeled, “Why? Please explain,” allowing subjects to
describe their thoughts in more detail. The web form also al-
lowed subjects to page back and forth to examine or modify
their answers before submission.

D. Data Logged

We consider an important event either a teacher’s sentence
or the robot’s response. The following are the data about each
event that we logged for every concept teaching session in order
to characterize the differences between the interaction modes.

• Mode—which interaction mode was used for this session.
• System Time—wall clock time.
• Interaction Step—number of events so far for this concept.
• Current Example—the compound object currently config-

ured in the demonstration area.
• Current Label—the label provided for the compound ob-

ject, if any.
• Sentence Type—one of the four valid sentences types from

the human teacher, if any.
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TABLE V
LEARNING PERFORMANCE METRICS FROM THE ROBOT’S PERSPECTIVE

• Answer Type—one of the five responses the robot could
provide, if any.

• Query— the compound object selected for attention direc-
tion using active learning, if any.

VI. RESULTS

In this section, we describe the performance gains in the in-
teractive modes compared to supervised learning. We also use
the survey data to characterize the experience of interacting with
the robot in each of the different modes.

A. Learning Performance

There already exists ample theoretical evidence supporting
the use of active learning over passive supervised learning. Ac-
tive learning techniques can produce classifiers with better per-
formance using a limited number of labeled examples, or reduce
the number of examples required to reach certain performance
[15]. The question we have posed in this experiment is whether
or not a nonexpert serving as the robot’s oracle in an interactive
setting can achieve such performance gains.

From the machine learning perspective, we found that using
active learning significantly improved performance compared
to passive SL, while we did not find a significant difference
between the three different interactive modes (AL, MI, AQ) in
which active learning was used. These results are summarized
in Table V. This holds true across the following metrics of per-
formance:

1) overall resulting accuracy at the end of the learning session,
using the -score

precision recall
precision recall

2) Percentage of subjects who taught the concept correctly
and precisely (i.e., subjects who reached a version space
consisting of a single hypothesis that was the true hypoth-
esis for the concept).

3) Speed of convergence to the correct concept hypothesis
(i.e., number of labeled examples given until the version
space consisted only of the true hypothesis).

Our results confirm that active learning has better perfor-
mance than passive learning, both in terms of the accuracy of the
learned classifier and the number of examples required to con-
verge to a high accuracy. In addition, our experiment showed
that nonexpert subjects could successfully act as oracles when
responding to a robot’s queries.

Active learning proved especially useful in terms of coverage
of the instance space as indicated by the low percentage of sub-
jects who could teach the concept precisely in the SL mode (six
out of 24 subjects). This shows that it can be difficult for human

teachers to keep track of how much of the space they have cov-
ered even for a relatively small instance space, and that queries
can significantly improve coverage.

We did not find a significant difference in performance
between the three interactive modes that used active learning.
Since we did not enforce compliance with the robot’s queries,
the achieved performance is a result of both examples elicited
through queries and examples given by the subjects inde-
pendent of the queries. Compliance of the subjects with the
robot’s queries is discussed in more detail in Section VI-E. It is
possible that we would see some differentiation in performance
between the interaction methods if the task were more complex
and required more examples. This is a point we would like
to investigate in future work. For now, we turn our attention
to the question of which mode was most preferable from an
interaction perspective.

B. Interactive Preferred Over Supervised

From the human partner’s perspective, all of the interactive
modes were more enjoyable and preferred over the SL mode.
Ratings from the survey are shown in Table VI, and a selection
of subjective comments are shown in Table X. Table VII gives
the significance of the effect of the different interaction modes
on these ratings as measured by one-way ANOVA tests, and
comparison of the SL mode with the three interactive modes
using -tests.

1) Perceived Intelligence: Simon’s intelligence was rated by
subjects as being higher in the three interactive modes than in
the SL mode. Subjects commented that Simon’s questions were
“relevant” and “made him seem smarter,” and that he came up
with “combinations that [they] had not considered or had for-
gotten to consider.” One subject stated that Simon’s ability to
come up with examples himself was “definitely a sign of more
intelligence than just passively listening to my instructions.”

In reality, not all of the robot’s queries to the teacher were
informative. This was due to the nature of only requesting the
top or bottom half of the example. Several subjects who per-
ceived this shortcoming tested the robot with the queried inter-
mediate example instead of labeling it, only to find out that the
robot knew the answer already. One subject also stated that he
“couldn’t be sure then if [Simon] was asking for the right exam-
ples,” showing his distrust of the informativeness of the queries.
However, overall the subjects still took the robot’s contributions
to the learning process as demonstrating higher intelligence than
never asking any questions at all.

2) Ease of Teaching: The fully active AL mode was consid-
ered the easiest out of the four modes. Subjects claimed that
Simon’s asking of questions made it “easy to know what he
knows and doesn’t know.” One subject considered it “easier to
have Simon let me know if he needed to see an example,” as
compared to doing all of the teaching himself in the SL mode.
Another subject commented that the AL mode was “really easy
because I didn’t have to think.”

One thing we observed in the comments was that many people
rated the ease of the mode based on how conceptually intuitive
the concept for that mode was to them. Although we attempted
to design the concepts to be similar in terms of specificity and
the number of examples required to teach them, many subjects
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TABLE VI
SUBJECTIVE RATINGS (1–7)

TABLE VII
SIGNIFICANCE TESTS ACROSS ALL MODES (REPEATED MEASURES ANOVA) AND COMPARISON OF THE SL MODE WITH THE THREE INTERACTIVE MODES ON

SURVEY RATINGS

TABLE VIII
PERCEPTION OF ACCURACY

perceived the complexity of the concepts as varying for the dif-
ferent concepts. The perceived relative complexity also varied
across subjects. We thought that this could be a reason that the
ratings did not show a significant difference between the modes
in the way that the comments did.

3) Enjoyability: Despite a number of negative comments
about each of the interactive modes (see Table X), all three in-
teractive modes were ranked higher than the SL mode in en-
joyability. AQ was the favorite among many subjects. A -test
between AQ and SL shows a significant preference for AQ, as
shown on Table VII. Subjects said it was “fun to answer his
questions,” and that it was “extremely enjoyable getting feed-
back from Simon.” This was in contrast to the SL mode, which
one subject even described as “very dull.”

C. Transparency and Active Learning

One of our hypotheses going into the experiment was that
active learning could potentially help the human partner main-
tain a better mental model of the learning process. To measure
this, we had subjects report their perceived accuracy after each
learning session and examined the discrepancy between their es-
timates and the actual accuracy of their taught models. Results
are shown in Table VIII.

People had a more accurate performance estimate in the in-
teractive modes than in the SL mode. In addition to having a
larger error in estimating the performance in the SL mode, sub-
jects overestimated rather than underestimated the accuracy of
the learner. Overestimating the performance is dangerous from
a machine learning perspective because it leads to early stop-
ping, preventing the learner from seeing more examples.

The underestimate for the interactive modes is still not ideal.
In the optimal case, the teacher has a mental model that matches
the accuracy of the learner and stops teaching exactly when the
accuracy hits 100%. In the interactive modes, the subjects con-
tinued teaching even after the learner was done and still did not

TABLE IX
EFFICIENCY

feel they were finished. As a result, there was no significant re-
duction in time taken, and there were no significant gains in ef-
ficiency, as shown in Table IX. In addition, the number of unin-
formative examples given was actually roughly equal between
all four modes.

If we suppose that the SL sessions continued until the robot
learned a model of 100% accuracy, then the SL sessions should
have taken more time than the interactive sessions. We think that
it is possible to realize gains in efficiency by reducing the time
spent teaching after the robot is done learning. However, this
will require the learner to demonstrate increased transparency
about what has been learned or when to stop teaching.

D. Balance of Control

As shown in Table VI, the rankings people gave for balance of
control are as we hypothesized. From the order of most to least
human control are SL, AQ, MI, and AL. The data also show
a significant effect of the constant stream of queries in the AL
mode on sense of control, as shown in Table XI. Subjects rated
the AL mode to have significantly less human control than all
other modes and the significance level decreased in the order of
SL, AQ, and MI.

Overall, we observed that the subjects’ responses were
skewed towards human control (closer to 1 than 7). That is,
even in the AL case when the robot attempted to direct all of
the examples, people reported approximately equal balance
of control with an average rating of 4.46. However, several
participants mentioned feeling that they held a peripheral role
in the learning process during the AL condition, as shown in
the negative comments in Table X. Letting the robot control
the interaction can cause a teacher to stop maintaining a mental
model of the process, preventing the learner from achieving
maximum efficiency when learning from a good teacher.

The two hybrid approaches of MI and AQ were an attempt
to bring more balance of control to the interaction without
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TABLE X
SELECTED COMMENTS ON INTERACTIVE MODES

TABLE XI
� -TESTS FOR AL MODE FOR RATINGS OF BALANCE OF CONTROL

sacrificing the benefits offered by active learning. MI represents
robot-directed shared control, and AQ represents human-di-
rected shared control. When we presented a forced choice
between MI and AQ, a majority of subjects chose the AQ mode,
but the results definitely show two categories of people. 33.33%
of the subjects preferred the MI mode because it required
less effort and seemed more balanced. The rest preferred the
increased control over teaching offered by requiring permission
to ask questions.

The comments shown in Table X are what we feel is a rep-
resentative selection of those given in the open-ended response
boxes. Positive comments about AL were characterized by the
triviality of teaching and the speed of Simon’s learning, and neg-
ative comments described displeasure at being bombarded by
questions or having a less significant role. Positive comments
about MI cited a balanced and efficient interaction, while neg-
ative comments cited confusion at the seeming randomness of
the robot queries. The AQ mode had the least negative com-
ments, which mentioned that explicitly allowing Simon to ask
questions took longer, and forgetting to allow him to ask ques-
tions made the mode too much like the SL mode. The many
positive AQ comments described the interaction as feeling the
most natural and easy, and enjoying the control of teaching in
conjunction with the support of Simon’s queries.

The results seem to show that people generally prefer that
the robot take initiative and be curious about the topic, but that
people also tend to desire control. Thus, they prefer to direct the
shared control, at least when they are doing the teaching.

When deploying active learning systems in the context of
HRI, the optimal interaction strategy may be user dependent.
The AQ mode seems appropriate when the teacher is an expert,
for it gives the teacher ample control while still allowing him
to draw assistance from the robot when necessary. Given our
relatively simple domain, this may be why AQ was the most

TABLE XII
COMPLIANCE ON ANSWERING QUERIES

preferred. The MI mode is more appropriate for nonexperts
who would tend to give uninformative examples, so it is po-
tentially problematic if they dislike teaching using this mode
of interaction. For everyday people who are teaching, either
robot-directed shared control needs to be improved, or AL
should be used to reduce confusion and ambiguity. Such a
system may need multiple strategies for interaction, with an
arbitration scheme to determine which is appropriate for the
current teacher. This is an important direction for future work
in this domain.

E. Compliance

Compliance describes how likely the teachers are to answer
the active learner’s queries. This is an issue that to our knowl-
edge has not been addressed in the literature, but will be highly
important for active learning systems that need to learn from ev-
eryday people. In order to reap the benefits of active learning,
the robot needs the human teacher to answer the questions it
asks.

As a measure of compliance in answering Simon’s queries,
we examine the percentage of queries made by Simon that were
labeled by the human teacher in the next turn. We expected to
see the relaxed versions of active learning (MI and AQ) lead to
better compliance due to being less demanding and leaving more
control to the teacher compared to traditional active learning
(AL). However, the results refuted this hypothesis; we found
that teachers responded to a higher fraction of the AL queries
compared to the MI or AQ queries (Table XII).

We believe that this finding could be due to two issues. As
mentioned previously, some of the queries made by the robot
were uninformative and could already be classified by the robot.
These queries were nevertheless necessary as intermediate steps
to attain an informative query. The percentage of queries that
are uninformative tends to be higher in the relaxed versions of



CAKMAK et al.: DESIGNING INTERACTIONS FOR ROBOT ACTIVE LEARNERS 117

TABLE XIII
COMPLIANCE ON ANSWERING QUERIES ACCORDING TO INFORMATIVENESS OF

THE QUERY

active learning. In the MI mode, the robot waits to make a query
until the number of informative queries in the instance space
becomes more sparse. When very few examples are informative
for pruning the version space, the probability that the example
on the demonstration area has one common object with one of
the informative examples is low.

Table XIII compares compliance on informative and uninfor-
mative queries. These results are consistent with our original
expectation: a higher percentage of informative queries are de-
clined by the teacher in the AL mode. Most of the queries that
were declined in the MI mode were uninformative. These results
also show that subjects were successful in detecting uninforma-
tive queries, either by maintaining a good mental model of what
the robot knew, or by testing the robot with the queried exam-
ples. Note that the occurrence of uninformative queries could
also have made the teacher more reluctant to respond to infor-
mative queries.

The other potential issue has to do with the human’s teaching
strategy. In both MI and AQ, the lack of queries initiated by
the robot early in the learning process seemed to establish a bal-
ance of control dominated by the teacher. A human teacher who
seized control early in the interaction may be more reluctant
to give it up later on. The teacher might be following a certain
strategy, and even when informative, a robot’s query could seem
out of place. This points to an important area for future research:
in what way should the robot ask smart questions? It may be that
the “best” query is not just an informative query from the ma-
chine learning perspective, but also one that is appropriate with
respect to the teacher’s strategy. The robot may be able to model
the teaching strategy in order to form the most appropriate in-
formative queries.

Based on these observations, our design recommendations
to increase compliance are 1) to avoid making uninformative
queries that could weaken the teacher’s trust in the utility of
answering the robot’s queries, and 2) to establish or relin-
quish control early on and subsequently maintain these mutual
expectations.

VII. CONCLUSION

Our research is in SG-ML: designing algorithms and systems
that take advantage of the ways that everyday people approach
the task of teaching in order to build robots that learn new tasks
and skills from end users. In this work, we have focused on
issues surrounding the development of active learning systems
in the context of human–robot interaction.

In our experiment, 24 people taught simple object-based con-
cepts to a social robot. We evaluated three interaction modes
using active learning compared with a baseline interaction using
only supervised learning. Our results showed that human-con-
trolled active learning could achieve performance gains over

pure supervised learning, and that the use of active learning
is viewed as preferable along with a number of dimensions by
human teachers, including perception of robot intelligence, ease
of teaching, and enjoyability.

Our results show that people had a more accurate perfor-
mance estimate in the interactive modes using active learning
than in the passive supervised learning mode, and that they
tended to underestimate rather than overestimate the learner’s
performance. However, an issue for future work is developing
transparency mechanisms to better communicate to the human
teacher about when learning has been completed.

In the context of HRI, compliance will be an important issue
for active learning systems. Our observations indicate that two
key elements for achieving higher compliance from human
teachers may be establishing roles and balance of control early
on in the learning process, and avoiding uninformative queries.

In general, our experiment found a range of preferences
across our three active learning modes. This makes us believe
that the optimal strategy is likely to be user-dependent. The AL
condition was found by some to be trivially easy and efficient,
but some users felt bombarded by questions and less engaged
in the process. The MI condition was seen as more balanced,
but the intermittent queries were also sometimes confusing to
the teachers. The AQ condition was the most preferred in our
experiment. The interaction was described as the natural and
easy, but was also seen as potentially less efficient than the
other two active learning conditions.

Our overall result shows that people prefer that the robot take
initiative as a learner and are willing, and even pleased, to ac-
cept assistance from the learner, but that they also have a de-
sire to control that assistance. For nonexpert teachers, a robot
using active learning can have a significant contribution to per-
formance, but can also be frustrating to teachers. A challenge for
future work is designing robot active learners that can achieve
theoretical performance gains with nonexpert human–teachers
without usurping control of the interaction.
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