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ABSTRACT
Programming new skills on a robot should take minimal time
and effort. One approach to achieve this goal is to allow the
robot to ask questions. This idea, called Active Learning,
has recently caught a lot of attention in the robotics commu-
nity. However, it has not been explored from a human-robot
interaction perspective. In this paper, we identify three
types of questions (label, demonstration and feature queries)
and discuss how a robot can use these while learning new
skills. Then, we present an experiment on human question
asking which characterizes the extent to which humans use
these question types. Finally, we evaluate the three question
types within a human-robot teaching interaction. We inves-
tigate the ease with which different types of questions are
answered and whether or not there is a general preference
of one type of question over another. Based on our findings
from both experiments we provide guidelines for designing
question asking behaviors on a robot learner.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics; H.1.2 [Models
and Principles]: User/Machine Systems

Keywords
Learning from Demonstration, Active Learning

1. INTRODUCTION
Learning from Demonstration (LfD) is aimed at allowing

end-users to program new skills on a robot with minimal
effort [1]. To this end, LfD techniques try to maximize the
generalizability of the learned skill to unseen situations with
a minimal number of demonstrations provided by humans.
Recently, Active Learning (AL) methods have been explored
to achieve this goal. The idea in AL is to improve learning
rates by giving the learner more control over what examples
it receives. The AL process involves the learner making a
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Figure 1: Participants demonstrating three different
skills to our robot Simon.

query1, which is a request for certain information, and the
teacher provides this information. The requested informa-
tion can have various forms, although most commonly it is
a category label for an unlabeled data instance. Different
strategies are available for choosing such queries (e.g. re-
ducing uncertainty or reducing variance).

Our focus, in this paper, is how the incorporation of AL
methods in LfD impacts a robot’s interaction with its user.
In prior work looking at using AL in an HRI setting, we
learned that compliance with the robot’s questions is not
guaranteed [2, 5]. Human teachers sometimes ignore the
robot’s questions, particularly when they judge it to be a
bad question. Thus, in this work we try to operationalize
what it means for a robot learner to ask good questions.

First we look at the notion of good questions from the ma-
chine learning perspective. We identify three types of queries
from AL (label, demonstration and feature queries) and dis-
cuss how they can be applied in an LfD setting (Sec. 3).
Then we look at the notion of good questions from a hu-
man learning perspective, with an experiment into human
question asking (Sec. 4). This allows us to characterize peo-
ple’s usage of the identified query types. Finally, we evaluate
the three query types in an HRI setting, where people teach
skills to a humanoid robot via LfD (Sec. 5). We find that fea-
ture queries are perceived as the smartest and label queries
are the easiest to answer.

2. RELATED WORK
The potential of AL for making learning efficient has been

been noticed by the Robotics community. AL has been ap-
plied to a number of LfD frameworks. For example, confi-
dence based autonomy [6] and dogged learning [12], use the
principle of uncertainty sampling to select states in which

1We use the terms (making a) query and (asking a) question
interchangeably throughout the paper.



the learning agent requests a demonstration while learning
a policy. In [10], the robot actively selects points outside the
region of stability of a learned policy, and requests demon-
strations from these states.

The evaluation of robotic systems that ask questions to
humans has been limited, particularly in LfD settings. Our
earlier work compares passive and active task learning [5]
and addresses the question of when to ask questions in a
mixed-initiative AL setting [2]. Rosenthal et al. investi-
gate how augmenting questions with different types of ad-
ditional information improves the accuracy of human teach-
ers’ answers [21]. In later work, they explore the use of
humans as information providers in a real-world navigation
scenario [22]. Other related work explores the idea of learn-
ing actions on a robot through dialog [4].

Evaluations of AL systems with naive teachers in Human-
Computer Interaction (HCI) are also relevant. For instance,
our finding in previous work that people do not enjoy a
constant stream of questions, was shown in a recommenda-
tion system domain [13]. Other studies investigated different
HCI issues such as feasibility of novel query types (e.g. fea-
ture queries) [7] or cost of different query types [23]. Similar
to this paper, Gervasio et al. investigated question asking in
procedure learning with a range of question types [8, 9].

3. QUERY TYPES IN ACTIVE LEARNING
The conventional query in the AL literature involves choos-

ing an unlabeled instance and requesting a label for it. The
instance can be chosen from a pool of unlabeled instances or
instantiated by the learner in some way. Such queries have
been used in learning skills on a robot, where a skill is rep-
resented as a policy that maps a state to a discrete action.
In this context, a query consists of asking for an action in
a chosen state [6, 17, 12]. This is useful in an HRI setting
when the robot’s actions are discrete and the human has a
way to refer to each action. However, robot skills often in-
volve continuous actions and the input from the teacher to
the learner is a sequence of state-action pairs (i.e. trajecto-
ries). In these cases it is impractical to ask for an isolated
state-action pair (e.g. asking for the motor commands of a
given arm configuration). Thus we need to re-think the way
that a query is made. We consider the following alternatives.

3.1 Label queries
Robot skill learning involves modeling/encoding a skill

from a set of demonstrations, such that it can be reproduced
correctly. The demonstrations provided by the teacher are
inherently labelled as positive. One way the robot could
make queries is to execute a motion and ask whether the
skill was performed correctly. We call this a label query.

The information provided by label queries depends on the
answer. If the response is positive, then the motion can be
used as another demonstration. What to do with negative
examples is not as straightforward. LfD methods are de-
signed to encode a skill from positive examples only, since it
is unnatural to demonstrate “what not to do”. One way to
make use of negative examples that arise from label queries,
is to update the learned model such that the probability of
the negative data being generated by the model is minimized
while the probability of the positive data being generated is
maximized. The main issue with this idea is the attribution
of negativity to the whole trajectory, while only parts of the
trajectory might be responsible for the failure. A second ap-

proach for making use of negative examples is to guide the
learner’s future queries towards positive examples (e.g. [11]).

Methods for generating label queries depend on the par-
ticular framework used for representing the skill. However a
general approach applicable to most frameworks is to sample
trajectories from the learned skill and evaluate them with a
certain criterion. For instance, the robot can choose to query
the trajectory that it is least certain about or the trajectory
that is most likely to increase the applicability of the skill.

3.2 Demonstration queries
The second type of query, which we call demonstration

or demo queries, involves creating a new scenario and re-
questing a demonstration from the teacher. Demo queries
give less control over what information is acquired from a
query, as compared to label queries. In label queries, the
learner specifies the whole trajectory and the teacher only
provides a label. In demonstration queries, the learner only
specifies certain constraints, while the trajectory is still pro-
duced by the teacher. Nevertheless, this gives some control
to the learner such that useful demonstrations can be ac-
quired. Demo queries are analogous to a method known
as active class selection [16], which consist of requesting an
example from a certain class.

One way to constrain trajectories provided by the teacher
is to specify the starting state. Trajectories are often repre-
sented with a sequence of end effector configurations relative
to a goal object. Thus the robot can configure its end ef-
fector in a certain way relative to the goal and request the
demonstration to start in this configuration. A larger range
of queries can be made by manipulating the target object.
A different way of constraining the demonstrations provided
by the teacher is to allow the teacher to control only a sub-
set of the robot’s joints while the robot executes a certain
trajectory on the rest of the joints, as in [3].

3.3 Feature queries
The third type of query is inspired from a relatively re-

cent technique in AL that involves asking whether a feature
is important or relevant for the target concept that is be-
ing learned [20, 7]. A particularly successful application of
this method is document or email classification. Learning
approaches to this problem involve the teacher reading doc-
uments one by one and providing category labels for them.
Even in an AL setting, providing a label for the queried doc-
uments is cumbersome and time consuming. On the other
hand a feature query directly asks whether a word is a strong
indicator of a certain category. This allows the learner to
directly modify its model for categorizing new documents
and drastically reduces the time spent by the teacher.

Note that the crucial element in the success of feature
queries in the given example is that the features (words)
with which the instances (documents) are represented are
meaningful for humans and the way they contribute to the
classification of the instance (being a strong indicator) is
intuitive. We believe that robot skill learning is at a unique
position for taking advantage of this method: while features
might not be as human friendly (i.e. feature names might be
too technical and feature values might be arbitrary numbers)
the robot’s embodiment can be used to refer to them.

Methods for choosing feature queries are also dependent
on the framework used for representing and learning skills.
One framework that allows feature queries to be directly



integrated is task space selection [18, 14]. This involves rep-
resenting demonstrations in high dimensional spaces that in-
volve features that might or might not be relevant (e.g. rela-
tive position and orientation of different points on the robot
to different objects in the environment). Methods try to
identify a subspace or assign weights to each feature such
that the skill is best represented. In this context a feature
query is to directly ask whether a feature is important for a
skill. These queries can also be used for directly manipulat-
ing the skill representation or for guiding other queries.

4. HUMAN QUERIES DURING LEARNING
In designing good questions for a robot learner, the Ac-

tive Learning literature gives us one perspective, but we are
also interested in taking human question asking behavior as
inspiration. Our intuition is that questions people typically
use will be easy for them to answer. While human ques-
tion asking has been investigated and modeled in different
cognitive tasks such as text understanding [15, 19], we did
not find any studies on human questions in the context of
skill or task learning by demonstration. Thus, we conducted
an experiment to investigate how humans ask questions in
scenarios similar to the ones robots are faced with. Our
experiment involves providing the participant with demon-
strations of a task, letting them ask questions about it and
then asking them to perform it in a new situation.

4.1 Experimental Design
We consider four tasks described in Fig. 2. The tasks are

chosen to cover the two types of LfD problems in robotics.
The first two tasks are focused on learning a task goal (de-
sired end state) whereas the latter two emphasize learning
skills to perform the task (desired actions or movements to
accomplish the task). Each of these are designed to be an
abstraction of a real-world task (e.g. making a sandwich),
to let the experimenter answer participants’ questions based
on the real-world counterpart. The abstraction also avoids
the influence of prior knowledge about the tasks.

The tasks or skills involve a fixed set of objects. Two
demonstrations, varied in certain aspects, were recorded for
each skill. The recordings were used for demonstrating the
skill to the participants. This is done to mitigate unintended
variances between the demonstrations given to different par-
ticipants. Participants learn all four tasks and the order
is counterbalanced across participants. The interaction be-
tween the participant and the experimenter is recorded by
a camera that oversees the table (Fig. 5).

4.1.1 Procedure
Throughout the experiment, the participant sits in front

of a table with a computer screen to their right for displaying
the demonstration videos. For each task, the experimenter
first brings the involved objects onto the table. Then the
participant watches the video. Participants are told that
they can watch the video as many times as they want, at
any time during the experiment. This is to reflect the fact
that a robot has access to the demonstrations provided by a
teacher before they ask questions and forgetting what hap-
pened in the demonstration is not an issue. Thus we would
like to avoid questions that address information present in
the videos. After watching the video at least once, the par-
ticipant is probed for questions. There is no upper limit on
number of questions, but a lower limit of three questions.

DEMO 1 DEMO 2
TASK 1 (Sandwich): Construct four 
layers. Bottom is a large green circle, 
second layer is a large purple circle, third 
layer has 3 or more non-overlapping small 
circles placed within the large circle, and 
top layer is a large green circle. Large 
circles are aligned.

TASK 2 (Laundry): Place all blue objects 
on the table into the large yellow square 
bin.

TASK 3 (Salt): Grasp the yellow block 
from the table, make it horizontal with its 
top above the blue bin. Move it down a 
few inches and back up. Number of 
lowering movements and length of the 
movement depends on the size of the bin. 
Place the block on the table vertically.
TASK 4 (Scoop&pour): Grasp the green 
block from the table. Dip it into the 
yellow bin and rotate it clockwise around 
90˚. Then move it to the blue bowl 
maintaining its orientation. Dip it and turn 
it counter-clockwise around 90˚. Place the 
block back on the table.

Figure 2: Description of the four tasks used in the
experiment and snapshots from the two demonstra-
tion videos shown to the participants.

When the participant has no more questions, the exper-
imenter configures the environment in a certain way and
asks the participant to perform the task. The participant is
reminded that they can keep asking questions, during and
after their execution. The execution is repeated twice with
different starting configurations.

In the instructions, participants are encouraged to ask any
type of question that they can think of and that they are not
restricted to yes/no questions. They are encouraged to refer
to the objects on the table in their questions. Participants
are told that the purpose of the study is to take inspira-
tion from their questions to allow robots to ask questions.
Thus we tell them not to ask questions about the underly-
ing purpose of the tasks since explaining these to a robot
would be impossible. Such questions are not answered by
the experimenter if they occur.

4.1.2 Evaluation
All recordings were later transcribed by the experimenter

using ELAN2. This includes annotations of the participant’s
questions, the answers given by the experimenter and the
participant’s interaction with the objects and gestures. In
addition we annotated the demonstration views by the par-
ticipant and the task executions.

The participants’ questions are categorized into the three
query types described in Sec. 3 based on the following cri-
teria. If the question asks the experimenter to evaluate an
action or a complete task execution it is considered a label
query. If the question requests an action, an action sugges-
tion or a complete task execution from the experimenter, it

2www.lat-mpi.eu/tools/elan/
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Figure 3: (a) Distribution of questions into three types of queries for each task in the first experiment
averaged across participants. (b) Distribution of feature queries into sub-categories. (c) Average distribution
of common actions and gestures that physically ground questions across tasks.

is categorized as a demonstration query. Lastly, all questions
that address a certain aspect of the task in general terms is
considered a feature query.

We also categorized the questions in terms of their form
based on the taxonomy established in [15]. This taxonomy
is shown in Fig. 4 with examples from our experiment for
each form of question.

4.2 Results
12 participants (3 female, 9 male) completed our first ex-

periment. The interactions took about 25 minutes and in-
volved an average of 40.58 (SD=13.09) questions.

4.2.1 Query types
The distribution of questions asked by participants across

the three query type categories is given in Fig. 3(a). We
observe that a significant majority of questions asked by hu-
mans (82%) are feature queries. We notice a large variety of
query types within feature queries in terms of the informa-
tion they attempt to gather from the teacher. We establish
the following subcategories of feature queries (a similar dis-
tinction was made in [8]).

• Feature relevance tests directly ask whether a feature
is important for a task: Does f matter? (Fig. 5(b))

• Feature invariance tests ask whether a feature has to
have a certain value: Does f have to be f1? (Fig. 5(d))

• Feature value tests ask whether a feature is allowed to
have a certain value: Can f be f1? (Fig. 5(a))

• Feature value requests directly asks the value range
that a feature is allowed to have: What can f be?
(Fig. 4 (SIMPLE))

Note that f can refer to an attribute of the involved ob-
jects, relations between objects, a property of the involved
movements, a parameter of the task description or the de-
pendency between any two of these. The distribution of fea-
ture queries into these subcategories is shown in Fig. 3(b).
We observe a rather uniform distribution across the first
three categories, while the open-ended value requests are
less common.

In addition we observe a distinction between full and par-
tial demonstration and label queries. A full demonstration
query requests a complete demonstration while a partial one
requests a single step of the demonstration. Similarly, a full
label query asks for an evaluation of a complete task exe-
cution while a partial label query asks whether a step was

VERBAL QUESTIONS

DIRECT (98%)INDIRECT (2%)
I guess it doesn't matter 

which hand I use. (Task 3)
OPEN (13%)

CLOSED (85%)

SIMPLE (9%)
How far do I 

lower it? (Task 4)

EMBEDDED (3%)
Is there an exact 
number of small 
circles? (Task 1)

SPECIFIED-ALTERNATIVE (4%)
Is color the only criterion or are 

there other requirements? (Task 2)

YES/NO (81%)

TAG (2%)
I turn it clockwise, 

right? (Task 4)

SIMPLE (60%)
Can I use other 
colors? (Task 1)

INTONATED (19%)
All shades of blue 
are fine? (Task 2)

COMPLEX (1%)
Does it matter what 

I put into what? (Task 2)

Figure 4: Question forms [15] and example instances
from our experiment (percentage of average occur-
rence shown in parentheses).

correct. Such partial label queries seem to be a useful mech-
anism for avoiding the credit assignment problem that arise
when a negative label is encountered (Sec. 3.3).

4.2.2 Question forms
The average usage percentage of each question form across

tasks is shown in Fig. 4. We observe a clear preference for
yes/no questions (81%), more often posed in the simple form
(60%). We notice that the choice between the three types of
yes/no questions reflect whether the person has an expecta-
tion about what the answer is, and indicates their confidence
in this expectation. While simple yes/no questions are neu-
tral about either answer, tag yes/no questions (e.g. right?,
correct?) indicate strong expectation of the answer being
“yes”. One example is the participant saying “I can use ei-
ther hand, right?” when he has already started a movement
with his alternate hand.

4.2.3 Physical grounding of questions
We observe that human questions during task learning are

largely embodied and physically grounded. On average 62%
of the questions asked by a participant involved interacting
with the environment. Label queries are inherently embod-
ied questions since they require the robot to perform the
actions to be labelled. Similarly demo queries require the
person to create the scenario in which a demonstration is
requested. It is, however, possible for the person to verbally



(d) “Small circles are always 
one red and some blues?”

(c) “The circle on the top, 
it has to be green?”

(a) “Can I do the motion 
without tilting this?”

(b) “Does the way in which 
I grasp this matter?”

Figure 5: Examples of the four common types of
physical groundings used with questions.

describe a sequence of actions (or a hypothetical scenario)
and request a label (or a verbal demonstration).

Feature queries on the other hand are more amenable to
purely verbal question asking, however they require the abil-
ity to talk about features and feature values. More specif-
ically, they require tokens that have a common physical
grounding for the two parties (person asking the question
and person being asked) to replace f and f1 in Sec. 4.2.1.
Even though such tokens might exist, we observe that they
are often replaced or accompanied by actions or gestures
that communicate them – we saw four common types:

• A single value instantiation refers to actions that gen-
erate a certain feature value while asking a question
about it. For instance in Fig. 5(a) the person asks if
the yellow block can be lowered without being tilted
while providing an instance of non-tilted orientations.

• Multiple value instantiations refer to actions that gen-
erate several different values of feature during a feature
query. An example is the participant showing several
different grasps while asking whether the way in which
the block is grasped matters (Fig. 5(b)).

• Referential gestures include pointing, touching or hold-
ing up a certain object in the environment while mak-
ing a feature query that relates to a feature of the
object. For instance, in Fig. 5(c) the participant holds
up a green large circle while asking whether the top
layer has to be green.

• Iconic gestures involve arm and hand movements that
communicate a certain feature or feature value refer-
enced in a question. An example, shown in Fig. 5(d),
is placing two hands at a certain distance from each
other to indicate a certain size.

The average distribution of these actions and gestures
across subjects is given in Fig. 3(c). We observe that 59%
of feature queries made by participants involve some form of
physical ground. Single value instantiations and referential
gestures are more common than the other two types. Also
we observe interesting differences in how they are used in
different tasks, which we discuss in Sec. 4.2.4.

4.2.4 Learning Goals versus Skills
We do not see major differences in the distribution of

query types or question forms between tasks that require
learning goals (Tasks 1 and 2) versus tasks that involve
learning skills (Task 3 and 4). The main difference in the
questions asked during goal versus skill learning is seen in
the physical grounding of the questions (Fig. 3(c)). We find
that questions during skill learning are more likely to be
physically grounded (74%) than during goal learning (46%).
This is not surprising as movements are harder to describe
verbally. Secondly, we see that value instantiations are more
common in skill learning (41%) as compared to goal learning
(15%). Correspondingly, a larger portion of the questions
during goal learning use referential and symbolic gestures.
This is also an intuitive finding as the features involved in
skill learning are about the movements, while the features
involved in goal learning are about objects in the world. In a
sense, referring to features of an object in the world, or using
a gesture to indicate a feature value are both instantiations
of the feature.

5. ROBOT QUERIES DURING LEARNING
Next, we investigate the use of the three types of queries

described in Sec. 3 with an HRI experiment that involves
teaching skills to a robot and answering its questions.

5.1 Platform
The robot platform used in our experiment is Simon, an

upper torso humanoid robot with 7 Degree of Freedom (DoF)
compliant arms, 4 DoF hands that allow object manipula-
tion and gestures, and a socially expressive head (Fig. 1).
The arms can be operated in a gravity compensation mode
with low stiffness to allow easy kinesthetic interactions. Si-
mon’s behaviors are implemented as a finite state machine
whose transitions are controlled with speech commands. The
Microsoft Speech API is used for speech recognition.

5.2 Experimental Design
The experiment involves teaching three different skills to

Simon: (i) pouring cereal into a bowl, (ii) adding salt to
the salad and (iii) pouring soda into a cup. Each skill is
paired with one query type and the parings are not varied,
since the three skills are very similar in nature. The partic-
ular queries made by the robot are pre-scripted, to avoid the
large variance that would occur in queries automatically gen-
erated based on the teacher’s demonstrations. This is due
to the stochasticity inherent to query methods as well as the
unpredictable variance in the provided demonstrations.

The skill-query type pairing and the two particular queries
made for each type of query are shown in Fig. 6. The first
label query involves a trajectory for pouring cereal that is
likely to be viewed as a negative example since the cereal
box is tipped too early. The second label query involves a
valid cereal pouring trajectory from a direction that is less
likely to be demonstrated by the participants (because of the
difficulty in posing the joints to make the cereal box prop-
erly oriented). Demo queries involve one starting position
that is slightly outside the range of expected common start-
ing points closer towards the robot, and another starting
position that is high above the bowl (which is unlikely to be
a starting point in the humans’ demonstrations). Feature
queries involve one feature invariance test about starting
orientation of the coke bottle, and one feature value test for



Label queries Demo queries Feature queries

Can you 
show me
how to add 
salt
from here?

Should I 
keep this 
orientation 
at the start?

Can I pour 
cereal 
like this?

Can I do 
the
following?

Can I pour 
at different
heights?

How do I 
add salt
starting 
like this?

Figure 6: The queries made by the robot for each
type of query in the second experiment.

heights of the bottle at the pouring location. Both feature
queries are grounded using multiple instantiations of the re-
ferred features. Participants teach all three skills and the
order of the skills is counter-balanced.

5.2.1 Procedure
Each participant first watches an instructional video that

describes the study. The video introduces the speech com-
mands and goes over an example interaction with a skill that
is different from the ones taught in the experiment. After the
video, participants are equipped with the microphone and
referred to the whiteboard next to Simon for reminders of
the speech commands. They are also asked to move Simon’s
arm around to get a sense of how the arm behaves.

The experiment proceeds with one session for each skill.
At the beginning of each session the experimenter places the
related object in Simon’s hand. Then the participant pro-
vides two demonstrations of the skill, using the commands
“New demonstration” and “End of demonstration” to denote
the start and end of the movement. Simon uses speech and
head nods to indicate that the person’s commands are heard.
Additionally, Simon looks at his hand during a demonstra-
tion, and gazes back to the teacher when the demonstration
is complete.

The participant is instructed to step away from the robot
after the two demonstrations and use the command “Do
you have any questions?” to trigger Simon’s query. Par-
ticipants are told there is no restricted vocabulary or gram-
mar for answering and they can say anything in response
to Simon’s questions. Participants are not instructed about
demo queries in advance, however they are prompted by the
experimenter if they do not know what to do in response
to demo queries. The experimenter advances the interac-
tion with a keyboard stroke once the participant answers
Simon’s question. This is repeated twice for each skill, thus
each participant sees two queries for each query type. Then
they rate the questions in a pen-and-paper questionnaire.

Table 1: Forced ranking results presented in terms
of the number of participants out of 18 who voted
the query type as best or worst.

Smartness Informativeness Ease
best worst best worst best worst

Label 3 6 4 6 10 4
Demo 2 11 8 8 3 7

Feature 13 1 6 4 5 7

Friedman χ2=13, χ2=0.12, χ2=3.11,
test p=0.001 p=0.94 p=0.21

5.2.2 Evaluation
Participants rate Simon’s questions on two 7-point Likert

scale questions addressing informativeness of the question
for the robot and ease of answering for the teacher. Each
question has a comment box for explaining the particular
ratings. Due to the sequential nature of the task these ques-
tions do not provide a reliable comparison of the three query
types, however they allow the participant to elaborate about
the evaluation criteria. For a more informed comparison of
the query types, we ask three forced-ranking questions ad-
dressing smartness of the question, informativeness for the
robot and ease of answering for the teacher at the end of
the experiment.

In addition to the subjective evaluation by participants,
we analyze the variance in the provided demonstrations in
comparison to the information acquired through queries. We
also provide a comparison of the time taken to pose and re-
spond to queries. We examine the variety of answers pro-
vided by the participants in response to Simon’s queries.

5.3 Results

5.3.1 Subjective evaluation
Our experiment was completed by 18 participants (4 fe-

male, 14 male). Results from the forced ranking questions
comparing the three query types are given in Table 1. We
find a significant ranking in terms of smartness of the ques-
tions asked by Simon. 72% of participants thought that
feature queries were the smartest, while 61% thought that
demonstration queries were the least smart questions. Rea-
sons stated by participants for choosing feature queries as
the smartest include: being “more abstract”, demonstrating
that “Simon understands task constraints at a high level,
rather than just trajectories” and not involving “repeating
the whole process of pouring coke”.

Although the query types were not found to be signifi-
cantly different in terms of ease of answering, we see that
56% of participants thought label queries were the easiest
to answer. A number of participants noted the fact that
Simon’s questions were yes/no questions and thus easy to
answer (7 mentioned for label queries, 4 for feature queries).
Two participants explained why they thought feature queries
were not as easy to answer as label queries: “The first [la-
bel] one was a yes-no (obvious), the coke [feature] question
actually made me think” and “I could not answer the second
question [pouring coke at different heights] with yes/no, it
depended.” We find that a large fraction of the participants



Table 2: Average time (in seconds) taken for the
robot to make a query and for the participants to
answer the query for the three types of queries.

Query Answer

Label 14.11 (SD=2.88) 3.31 (SD=2.96)
Demo 7.36 (SD=1.08) 24.07 (SD=5.38)

Feature 9.56 (SD=0.49) 7.17 (SD=11.99)

answered the robot’s question with a plain yes/no (17 for la-
bel queries, 15 for feature queries out of 18), while few gave
explanations, e.g. “No, because the cereal would spill” or
added emphasis, e.g. ”Yes, orientation matters.” Some men-
tioned in the survey that they did not trust the robot would
understand them and provided additional information about
their answer within the survey (“I said yes, but that would
only work for a full box of cereal”).

We do not see any consistency in the ratings in terms of
informativeness of the questions for the robot. This seems
to be a result of different interpretations in informativeness,
which is revealed by participant comments: (label) “good
question, in that the timing of when the box is tipped is
important”, (demo) “the salt question gives more freedom
for the robot to choose new actions”, (feature) “more general
information, than a 3rd or 4th demonstration.”

5.3.2 Task measures
The problem of choosing between different types of queries

in AL is often addressed by defining a utility for each query.
This reflects the payoff between the benefits of the query
(e.g. informativeness) and the costs of the query. The most
common measure of cost used in the literature is wall-clock
time. For queries in the LfD setting, this will depend on how
fast the robot can move and how fast it speaks. Nevertheless,
we present the time taken to make each type of query, as well
as time taken for the teacher to complete their answers, for
a comparison in Table 2.

We see that the ordering of the three types in terms of
making the query is as expected: label queries take the most
time as they require a complete execution of the skill, fea-
ture queries take less time (determined by the longest of the
verbal question or the action performed for physical ground-
ing), and demo queries take the least (determined by the
longest of the verbal questions and the movement to reach
the desired query start pose). For the answer we see that
demo queries take much longer than the other two types of
queries, as they require a whole demonstration. We observe
that feature queries have a longer response time than label
queries, even though both are yes/no questions and a very
large variance for feature queries. This was due to a subset of
the participants having trouble understanding Simon’s ques-
tion and the interruption by the experimenter to repeat the
question. This happened with four participants on the first
feature query and one time on both feature queries. When
these outliers are removed the average time to answer the
query is 4.07 (SD=5.54) seconds which is comparable to the
response time for label queries. We believe part of the rea-
son was that the participants in all interruption cases were
not native English speakers. However, this supports the re-
sult from the subjective evaluation that feature queries are

(a) (b)

Figure 7: The end-effector trajectories provided by
all participants (thin lines). (a) (Pouring cereal) Su-
perimposed with the label queries made by the robot
(thick lines). (b) (Adding salt) Simon’s pose shows
the second demo query starting point. Starts of the
demonstrations are shown as dots.

harder to interpret than label queries. Thus, they might
require repetitions which adds to their cost.

As we did not commit to a particular learning method in
this paper, it is not possible to make a direct comparison of
the informativeness of each type of query. In the following,
we try to illustrate how each type of query is informative
for the learned skill. Fig. 7(a) provides a comparison of all
demonstrations made by participants with the label queries
made by Simon. We observe that the second label query
(Fig. 6), which was chosen to be a valid way of pouring,
is isolated from all the demonstrations provided by partici-
pants. We believe the reason that the queried trajectory was
not covered by teacher demonstrations, was the difficulty of
kinesthetic manipulation of the joints around this region.
This highlights the benefits of label queries: certain ways of
performing a skill might be valid even though they are un-
likely to be demonstrated. Label queries can uncover such
possibilities. In Fig. 7(b) we observe how the robot’s second
demo query (Fig. 6) is different from the starting points of
the demonstrations provided by humans. These illustrate
how the different types of queries can quickly expand the
applicability of a skill to unexplored regions.

6. DESIGN IMPLICATIONS
In designing interactions for active robot learners, the

first question to be addressed is the choice of query types.
Our results suggest primary usage of feature queries. These
were the most common in human learning (82%) and were
thought to be the smartest questions when used by the
robot. On the other hand, these are the most challeng-
ing queries to produce automatically in a way that is in-
terpretable by humans. Label queries are good alternatives
that are easy to produce and are interpretable. They also
have the advantage of very fast response and low effort re-
quirements from the teacher. However, negative examples
are likely to occur and are less informative in learning the
skill. In addition, these negative examples can have undesir-
able consequences (e.g., spilling cereal). One idea, inspired
from the common human usage of label queries, is to do par-
tial label queries. This would involve the robot performing
smaller portions of a skill one at a time and asking whether
the performance is correct so far after each segment.

In terms of the question form, we found that closed form



questions are desirable as they are common in human learn-
ing, and they facilitate the interpretation of the response by
limiting possible answers. In addition, the fact that label
and feature queries were yes/no questions was pointed out
by participants as a positive property. However we observed
that limiting the answers to yes/no could result in inaccurate
information or missed opportunities for additional informa-
tion. Thus, it is worth trying to build in the capability to in-
terpret answers like “sometimes” or “possibly”. In addition,
question forms can be used as a transparency mechanism
that reveals the robot’s expectation and confidence about
the anticipated answer.

Another important consideration in designing question
asking behaviors is the physical grounding of the question.
In particular skills are often represented with features that
are hard to verbalize, but easy to instantiate (e.g. posi-
tions and rotations). For instance in our experiment, Si-
mon was able to ask about the importance of “maintaining
the end-effector orientation about the x-axis at about 90
degrees” without needing to explain these terms. This po-
tential should be exploited whenever possible.

7. CONCLUSION
In this paper, we identify three types of queries for Ac-

tive Learning, with which LfD methods can be augmented
to achieve faster learning. We present two experiments; the
first characterizing the use of these queries in human task
learning and the second evaluating them in a human-robot
interaction setting. We find that feature queries (explicit
tests on certain aspects of a task) are the most common
in human learning and are perceived as the smartest when
used by the robot. In addition, we find humans use sev-
eral physical actions to highlight or instantiate features that
they want to make queries about. Based on these findings
we provide several guidelines that can inform the design of
question asking behaviors on a robot learner.
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