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Abstract— Turn-taking is fundamental to the way humans
engage in information exchange, but robots currently lack
the turn-taking skills required for natural communication.
In order to bring effective turn-taking to robots, we must
first understand the underlying processes in the context of
what is possible to implement. We describe a data collection
experiment with an interaction format inspired by “Simon
says,” a turn-taking imitation game that engages the channels
of gaze, speech, and motion. We analyze data from 23 human
subjects interacting with a humanoid social robot and propose
the principle of minimum necessary information (MNI) as a
factor in determining the timing of the human response. We also
describe the other observed phenomena of channel exclusion,
efficiency, and adaptation. We discuss the implications of these
principles and propose some ways to incorporate our findings
into a computational model of turn-taking.

I. INTRODUCTION AND RELATED WORK

Turn-taking is the fundamental way that humans organize
interactions with each other. The idea that turn-taking is a
deeply rooted human behavior is supported by research in
developmental psychology. Studies of mother-infant dyads
have defined interaction patterns in dyadic phases [1] and
described rhythmic cyclicity and mutual regulation [2].

Extensive treatment of turn-taking can be found in the
linguistics literature as well. Some work focuses on the
structure of syntax and semantics in language usage [3], and
other work additionally analyzes the contribution of other
signals used by humans such as paralinguistic cues, gaze
shift, and gesticulation [4], [5].

We believe that socially embedded machines that employ
the same turn-taking principles will be more intuitive for
humans to interact with. Implementations of turn-taking
components come from many different approaches. Turn-
taking is a highly multimodal process, and prior work gives
much in-depth analysis of specific channels, such as gaze
usage to designate speaker or listener roles [6] or speech
strategies in spoken dialog systems [7]. Closely related is
the problem of contingency or engagement detection, which
requires implementing robot perception for awareness of the
human’s cue usage [8], [9], [10]. Turn-taking has also been
demonstrated in situated agents [11], including management
of multi-party conversation [12].

Eventually, some unifying efforts will be required to inte-
grate the piecewise work into an architecture for physically
embodied robots. Although it may be convenient for a
roboticist to appeal to the argument that good turn-taking
emerges automatically from reactive behavior [13], the real-
ity is that turn-taking interactions with humans also involve
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Fig. 1. A participant plays “Simon says” with the Simon robot.

constant overlapping, misunderstanding, and recovery [14].
An architecture designed for turn-taking should be able to
handle these situations, both perceptually and behaviorally.

In this paper, we present an experiment designed to inform
a model of turn-taking behavior that can be implemented on
a social robot. This model includes timing parameters that
are measured relative to a variety of interaction signals. We
note that such signals cannot be defined without developing
a theory about the information conveyed by certain commu-
nication acts between the robot and the human. We develop
such a characterization that permits us to effectively estimate
the relevant timing parameters.

II. APPROACH

To provide context for our experiment, we describe our
approach to achieving our longer-term research goal of nat-
ural, human-like turn-taking in robots. We intend to build a
computational model of turn-taking interchanges that defines
the relevant states of both the human and the robot, as well
as how belief about those states should drive the behavior
of the robot. Included in the model is a specification of
the behavioral signals that indicate the state of the human
partner. To leverage this model, we need to determine what
signals are most indicative of important events in turn-taking,
how feasible they are to perceive, and how they vary or stay
constant across different types of domains.

A. Computational Model of Turn-Taking

The foundation of our computational approach to turn-
taking is uncertainty modeling. Uncertainty in estimating
when one or one’s partner should speak is already an issue in
human-human turn-taking; even with excellent perceptual ca-
pabilities, humans are still prone to unintended interruptions,
simultaneous starts, and awkward silences [14]. On a robot,
the problem of uncertainty is heightened even further by
noisy and limited sensory data. To deal with uncertainty over
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Fig. 2. A proposed architecture for turn-taking. Parameters are specified
by a context-free Turn-Taking Module and context-dependent Instrumental
Module. Parameters from both modules are used to instantiate robot actions.

time, we intend to use a probabilistic model that comprises
a timing model and an observation model:

1) Timing Model: The timing model describes the fun-
damental timing or structure of when people naturally take
turns. The robot can use the timing model to determine if a
person is being contingent or engaged, as well as decide
when it might want to take a turn in order to avoid a
collision. When perception is ambiguous, timing provides
a feed-forward signal for the robot to keep on interacting.

2) Observation Model: The observation model describes
the robot perception required to determine when people are
about to seize or pass the floor, or when they are acting
engaged. The observations form a feedback signal that keeps
the overall model updated and allows the robot to understand
what is currently transpiring in the interaction.

Similarly to [10] and [12], our approach in this paper is to
analyze interaction data in order to find general assumptions
that can be used to construct such a model. We thus conduct
an experiment in which we collect a diverse selection of turn-
taking episodes, both good and bad, through a combination of
teleoperation and randomly generated timing variations. We
then hand-code this data to learn about human-robot turn-
taking behavior that can later be executed autonomously.

B. Architecture for Turn-Taking

Figure 2 shows our current concept of an architecture for
turn-taking. The architecture focuses on the specific channels
of gaze, speech, and motion, which are independently well
studied in HRI. Actions in these channels are parametrized,
such that specific parameters can be decided by either the
domain-specific Instrumental Module or the generic Turn-
Taking Module in order to generate the final behavior.

The separation between the Instrumental Module and
Turn-Taking Module highlights the principle dichotomy be-
tween domain-specific robot capabilities and context-free
interaction behavior. In reality, the boundary between the
two is not so pronounced, but we hope to extract as much
domain-independent turn-taking behavior as possible in order
to create a transferable module. In the future, we intend
to analyze channel usage across multiple domains, such
as teaching-learning interactions or collaborations involving
object manipulations. In this paper, we focus on turn-taking
in the specific domain of a “Simon says” game and present
some analyses that will lead us closer to this goal.

III. EXPERIMENT

We ran a teleoperated data collection experiment in which
our robot plays “Simon says” with a human partner. The
game is attractive as an initial domain of investigation for its
multimodality, interactive symmetry, and relative simplicity,
being isolated from such complexities as object-based joint
attention. We collected data from a total of 27 human
subjects. For 4 subjects there was a problem that caused data
loss with at least one logging component, so our analysis
includes data from 23 subjects. We collected approximately
4 minutes of data from each participant.

A. Platform

The robot used is an upper-torso humanoid robot, Si-
mon. It has two series-elastic 7-DOF arms with 4-DOF
hands, and a socially expressive head and neck. The sensors
recorded were one of Simon’s eye cameras, an external
camera mounted on a tripod, a structured light depth sensor
(“Kinect”) mounted on a tripod, and a microphone worn
around the participant’s neck. The computers used for log-
ging data were synchronized to the same time server.

B. “Simon Says” Domain Description

The domain is an imitation game based on the traditional
children’s game “Simon says.” Figure 1 shows the face-to-
face setup. The game has a leading and a following role; the
leader is referred to as “Simon.” We divide the interaction
into a game phase and a negotiation phase.

In the game phase, the leader can say, “Simon says,
[perform an action].” The available actions are depicted in
Figure 3. The follower should then imitate that action. The
leader can also say, “[Perform an action],” after which the
follower should do nothing, or else he loses the game. The
leader concludes the set after observing an incorrect response
by declaring, “You lose!” or “I win!”

In the negotiation phase, the follower can ask, “Can I play
Simon?” or say, “I want to play Simon.” The leader can then
transfer the leadership role or reject the request. The leader
also has the option of asking the follower, “Do you want to
play Simon?” or saying to him, “You can play Simon now.”
The leader and follower can exchange roles at any time.

C. Robot Behavior

All of the robot’s behavior is organized into states in a
finite state machine (FSM). The 15 states available to the
teleoperator are described in Table I. Each state in the FSM
controls the robot’s three channels of communication:

• Body animation – the actions of the game as shown
in Figure 3. The speed of the animation was selected
uniformly at random from a safe range.

• Speech content – an utterance randomly selected from
the group of valid sentences for the state. Each state
had 1-3 sentences as options.

• Gaze direction – gazing at the person’s face using a
visual servoing mechanism with the eye camera, or
gazing away from the person.



(a) “Wave” (b) “Bow” (c) “Shrug”

(d) “Fly like a bird” (e) “Play air guitar”

Fig. 3. Actions in the “Simon says” game.

Random delays were sometimes inserted before each chan-
nel, to increase variation in the robot’s executed behavior.

One of the authors teleoperated the robot using a keyboard
interface to select specific FSM states. The teleoperator
additionally had the option of interrupting the current state,
for a total of 16 keys. All of the keybinds were on one side
of the keyboard to reduce the contribution of the keypress
interface to the timing of the interaction.

D. Protocol

Participants were provided an explanation of the game and
the available actions. They were not told that the robot was
being teleoperated. The participants were told to adhere to
a set of keywords when speaking to the robot. They were
then given about a minute of practice with the robot to
familiarize themselves with the interaction and memorize
the five actions. During this time they were allowed to ask
clarifying questions to the experimenters. After the practice
session, data collection commenced, and they were told to
avoid interacting with the experimenters.

After the data collection was complete, subjects completed
a survey about their experiences. The questions were similar
to those in [11]. We will be using these survey responses
as a baseline for evaluating future implementations of au-
tonomous turn-taking controllers.

IV. RESULTS AND ANALYSIS

Because our goal here is to understand human timing in
turn-taking, our analysis focuses on human responses to the
robot’s different signals. We ask the questions: Which signal
is the most reliable predictor of human timing? What is the
timing model and distribution? This informs how a robot
should shape its expectations about the timing of human
responses, as well as emulate these parameters in order to
produce human-like behavior. In this section, we present an
analysis of experiment results about several components that
contribute to the manifested timing of turn-taking.

A. Data Coding

Figure 4 shows our interface for visualizing and coding
the data. The data from the depth sensor, two cameras, and

TABLE I
FSM STATES AVAILABLE TO TELEOPERATOR.

State Description
Hello Start the interaction (“Hello, let’s play Simon says”).
Bye End the interaction (“Thanks, that was fun”).
Request Request to play Simon (“Can I play Simon now?”).
Accept Accept request (“That’s fine with me”).
Deny Deny request (“No, not yet”).
Simon says Select an action command starting with “Simon says.”
Do this Select an action command.
Win Conclude the set by winning (“Ha ha, I win”).
Lose Admit to losing (“Oh no, I guess you win”).
Can’t do Say “I can’t do that.”
Bow Perform “bow” action as a follower.
Bird Perform “bird” action as a follower.
Guitar Perform “air guitar” action as a follower.
Shrug Perform “shrug” action as a follower.
Wave Perform “wave” action as a follower.

microphone can be played back in a synchronized fashion
alongside an OpenGL visualization of the robot’s joint angles
and a live update of the text log of the robot behavior. The
coders can scrub through the data and visually assess how
their coded events align with other events in the data.

The specific data we examine is the human response delay,
which is the time between a referent event and the start of
the coded human response. We separate the data collected
from this experiment into game phase data and negotiation
phase data, which show two different types of turn-taking
interactions. All events that needed to be coded (i.e. were not
part of the logged robot behavior) were coded independently
by two of the authors, and for each event that was agreed
upon, the coded time was averaged. The events were:

1) Game phase response: a human event. In the game
phase data, the robot plays the leader and communicates
using a mixture of speech, motion, and gaze. The human
plays the follower and responds primarily with a motion,
which is sometimes secondarily accompanied by a speech
backchannel. For a more controlled data set, the game phase
data includes only correct human responses to the robot’s
“Simon says” turns. The coder agreement was 100% for
game phase events, and the average difference in coded time
was 123 milliseconds.

2) Negotiation phase response: a human event. In the
negotiation phase, the exchanges are shorter, and the robot
uses speech but not any body animations to communicate.
Most robot utterances are also too short for the robot to
have time to gaze away and back to the human, so the
robot primarily gazes at the human. The coder agreement
was 94.2% for negotiation phase events, and the average
difference in coded time was 368 milliseconds.

3) Minimum necessary information (MNI): a robot signal.
This describes an interval during which the robot conveys the
minimum amount of information needed for the human to
respond in a semantically appropriate way. More explanation
and reasoning for this signal is provided next in Section IV-
B. Figures 5 and 6 show examples of MNI video coding.
In the game phase, the human needs to know whether or
not to respond as well the motion with which to respond,



Fig. 4. Interface for visualizing and video-coding the collected data.

(a) All informative speech occurs before the animation starts.

(b) The action is conveyed through motion before the
human knows whether or not to execute it.

Fig. 5. Examples of coding robot MNI in the game phase.

(a) Pronouns demarcate information for turn exchange.

(b) The emotive phrase announces the end of a set.

(c) Examples of acknowledgments.

Fig. 6. Examples of coding robot MNI in the negotiation phase.

so the information end is the earliest point at which both of
these are conveyed. In the negotiation phase, the information
is usually marked by a pronoun. The coder agreement was
99.8% for robot MNI events, and the average difference in
coded time was 202 milliseconds.

B. Minimum Necessary Information (MNI)

In order to characterize a predictive human response delay
distribution, one needs to determine a reliable referent event.
For example, some channel-based referent events are: the end
of robot motion, the end of robot speech, or the moment
when the robot gazes at the human after looking away.
Histograms of response delays with respect to these referent
events are shown in Figure 7 for both interaction phases. It
becomes immediately apparent that not all of these signals
are useful predictors. Specifically, a good referent event
should yield distributions that have these properties:

1) Nonnegativity – If the response delay is negative, then
this referent event cannot be the cause of the response.

2) Low variance – The distribution should have low
variability to allow for more accurate prediction.

3) Generality – The distribution should be consistent
across different types of interactions.

Responses to the motion event and the gaze event both vio-
late nonnegativity (Figure 7). Gaze has been demonstrated to
be an excellent indicator in multiparty conversation domains
[6], [12], but it is less predictive in this particular dyadic
interaction; we suspect that it might show greater impact in
a dyadic object manipulation task. The best channel-based
referent event is speech, but 41% of human responses still
occur before the robot finishes speech in the game phase.

We thus argue for a concept called minimum necessary
information (MNI) — the minimum amount of information
needed to be conveyed by the robot for the human to respond
in a semantically appropriate way (that is, discounting barge-
ins or simultaneous starts). The best referent event to use is
the end of the MNI signal. The response delay distributions
to MNI endings are shown superimposed with the other
distributions in Figure 7 and also fit to curves in Figure 8.
MNI satisfies nonnegativity for both interaction phases and
is relatively general. The means in Figure 8 are also within
half a second from that of the distribution in [9]. We think
this could be attributed to the higher processing requirement
for the multimodal information content of this game.

C. Channel Exclusion

We also hypothesize that human turn-taking follows con-
ventions for managing exclusions per channel. We observed
that although subjects did not wait for the robot to finish
speaking before they moved, they usually waited for the
robot to finish speaking before they spoke. This accounted
for the differences in the distributions of response delays
to speech shown in Figure 7. For responses to speech, the
negotiation phase distributions were shifted in the positive
direction as compared to the game phase distributions.

Additionally, we observed that people tended to avoid
simultaneous speaking after a simultaneous start. There were
23 instances of simultaneous speech in the data set, spread
across 10 subjects. Of these, 7 (30%) constituted backchannel
feedback. The remaining 16 instances were simultaneous
starts. Of the simultaneous starts, 3 resulted in the teleop-
erator interrupting the robot speech, 8 resulted in the human



Fig. 7. Histograms of human response delays with respect to all potential
robot referent signals. Negative delays indicate that subjects responded
before the robot completed its turn-taking action within that channel.

Fig. 8. The delays of human responses with respect to robot MNI endings in
the negotiation and game phases. The curves represent maximum likelihood
fits to Student’s t probability density functions.

interrupting his own speech, and 3 resulted in a decrease in
the human’s speech volume. Although this is sparse data,
this tendency to back off from simultaneous starts shows an
adherence to channel exclusion.

This channel exclusion also has an effect on the response
delay distributions to MNI. Compared to the game phase
distribution, the negotiation phase distribution is slightly
delayed due to this lock. However, the MNI is still relatively
robust overall because the robot’s speech contained a balance
of shorter and longer utterances.

This domain had only one channel with a “lock,” which
was speech. One could envision a domain where there were
exclusions in the motion channel. Both parties could need
to move in the same space or need to use the same tool.
These factors could lead to delayed responses. In addition,
more or fewer exclusions in any channel could arise due to
differences in cultural communication or personality.

D. Efficiency vs. Adaptation

Turn-taking is a dynamic process, and timing can evolve
as the interaction progresses. If we believe that MNI endings
are stable referent events, we can use response delays to them
to investigate how human responses change over time.

One phenomenon we observed in the data was the notion
of increasing efficiency or fluency, as described extensively
in [15]. We can characterize a response’s efficiency as the
inverse of the response delay after the MNI end — the
lower the response delay, the higher the efficiency. For some
subjects, their time to react decreased with practice, as less
information was needed from the robot to react, and the
response delays showed a downward trend. An example is
shown in Figure 9(a). Nine subjects (39%) exhibited this
trend in their data.

Although this interaction was too short to see a significant
difference, we think that a robot can expect this change in any
domain involving repetitive behavior that leads to improve-
ment in performance. Leiser observed in [16] that repeated
information exchanges between humans cause abbreviations
in language due to decreasing information requirements,
which suggests that responses would approach MNI endings
with repetition. A well-practiced human-robot dyad may
operate at a periodicity close to the MNI point, with plenty of
overlapping in any channel that did not present an exclusion.

We hypothesize that there is also another phenomenon
of adaptation, where one party can adapt to and gradually
approach the other party’s timing. We observed that certain
subjects started to imitate the robot’s mannerisms of speech
and motion and actually slowed down their timing to be
more similar to the robot’s. An example is shown in Figure
9(b). Seven subjects (30%) showed this trend. With a robot
behavior control system that was sensitive to turn-taking
timing, this could occur in both directions, with both parties
converging on a timing between their prior distributions.

V. DISCUSSION AND FUTURE WORK

As previously described in Section II, our current com-
putational model considers turn-taking in terms of a timing
model and an observation model. The data from this experi-
ment informs the directions of our future work to implement
these models for enabling effective turn-taking on a robot.

With respect to the timing model, we observed in this
experiment that timing can vary greatly across subjects.
However, it may be useful to start with an informative
prior such as that in Figure 8 and update the model as the
interaction progresses, factoring in such effects as adaptation
and increased efficiency with practice.

We intend to train an observation model from the sensor
data based on video-coded labelings of turn-taking events.
Some of the indicators are very subtle, such as eye gaze
shifts, aspirations, and mouth openings, which have been
described previously [4], [5]. These are plainly observable
to the video coders, but it remains an open question whether
the robot can feasibly recognize these autonomously.

Both the timing and observation models depend on the
concept of MNI. Determining the MNI may not be easy for



(a) Efficiency – Subject 8 responds more quickly after
more practice with the game.

(b) Adaptation – Subject 18 responds more slowly over
time, adapting to the robot’s behavior.

Fig. 9. Changes in interaction timing.

less structured domains. For a “Simon says” game with only
a handful of actions and utterances, it can be pre-coded easily
for autonomous behavior, but this coding may be too arduous
for other tasks. It is possible that it can be learned on a per-
action basis if the timing model is already known. We plan
to verify the timing with experiments in other domains.

We do think that the principle of MNI is a useful way
of understanding the process, even in cases when it is not a
convenient signal to come by. It makes some recommenda-
tions for robot behavior. As an example, humans use “uh”
and “um” followed by a pause as a strategy for seizing and
holding turns when they are uncertain about what they are
going to say [17]; the “uh” demarcates their acceptance of
the turn and engagement in the interaction while denying in-
formation to their partner in order to hold the turn. The robot
could similarly manage its own information transmission as a
strategy for regulating the interaction. Conversely, the robot
should relinquish its turn earlier if the human has clearly
conveyed understanding, rather than always insisting on
completing the current action in its FSM state. A turn-taking
architecture would need to include support for smooth action
interruptions to handle this dynamic turn-taking process.

We believe that the cues in the observation model serve
as indirect mechanisms for the communication of intention
and understanding, while information exchange is what truly
drives all turn-taking. Each party manages its own informa-

tion transmission, fully observable to itself, but must also
interpret the other party’s information reception, which is
only partially observable to itself.

VI. CONCLUSION

We conduct a data collection experiment in which we
collect and code data from 23 human subjects playing
“Simon says” with the Simon robot. Our data suggest that
minimum necessary information (MNI) is a robust indicator
for determining the human response delay to the robot
across multiple phases in the interaction. The data also
show exclusions in the speech channel and point to ways
of analyzing efficiency and adaptation. We intend to use
these results to implement a computational model of turn-
taking that will lead to an effective and generic controller
for autonomous turn-taking in human-robot interaction.
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