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ABSTRACT
Coupled degrees-of-freedom exhibit correspondence, in that
their trajectories influence each other. In this paper we
add evidence to the hypothesis that spatiotemporal corre-
spondence (STC) of distributed actuators is a component of
human-like motion. We demonstrate a method for making
robot motion more human-like, by optimizing with respect
to a nonlinear STC metric. Quantitative evaluation of STC
between coordinated robot motion, human motion capture
data, and retargeted human motion capture data projected
onto an anthropomorphic robot suggests that coordinating
robot motion with respect to the STC metric makes the
motion more human-like. A user study based on mimick-
ing shows that STC-optimized motion is (1) more often rec-
ognized as a common human motion, (2) more accurately
identified as the originally intended motion, and (3) mim-
icked more accurately than a non-optimized version. We
conclude that coordinating robot motion with respect to the
STC metric makes the motion more human-like. Finally, we
present and discuss data on potential reasons why coordi-
nating motion increases recognition and ability to mimic.

Categories and Subject Descriptors
1.2 [Artificial Intelligence]: Robotics—Kinematics & dy-
namics, propelling mechanisms; C.4 [Performance of Sys-
tems]: [Measurement techniques, performance attributes]

General Terms
Algorithms, measurement, performance

Keywords
Metrics, human-like motion, user study, mimicking

1. INTRODUCTION
When social robots interact with humans by communi-

cating in a manner that is socially relevant and familiar
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to their human partners, the benefits are increased trans-
parency; improved teammate synchronization; and reduced
training cost for collaborative robots due to increased “user-
friendliness.” This has been called “natural human-robot in-
teraction,” and requires believable behavior to establish ap-
propriate social expectations [6]. Furthermore, display of
appropriate non-verbal communication behavior increases
perception of agent realism [4]. Our work addresses this
overall problem of how to generate believable or human-like
motion for an anthropomorphic robot.

We hypothesize that spatiotemporal correspondence (STC)
of distributed actuators (i.e. motor coordination) is a com-
ponent of human-like motion. We present motion optimized
with respect to a nonlinear STC metric based on Kolmogorov-
Sinai entropy as both a synthesis and evaluation tool, and
validate our results using a user study based on mimicking.
The results show that STC-optimized motion is (1) more
often recognized as a common human motion, (2) more ac-
curately identified as the originally intended motion, and
(3) mimicked more accurately than an unmodified version
of human motion retargeted to the robot. We conclude that
coordinating robot motion with respect to the STC metric
makes it more human-like. Finally, we present and discuss
potential reasons why coordinating motion increases recog-
nition and the human ability to mimic.

2. RELATED WORK

2.1 Human-like Motion in Robotics
A fundamental problem with existing techniques to gen-

erate robot motion is data dependence. For example, a very
common technique is to build a model for a particular mo-
tion from a large number of exemplars [13, 21, 15]. Ideally,
the robot could observe one (potentially bad) exemplar of a
motion and generalize it to a more human-like counterpart.

Dependence on large quantities of data is often an empiri-
cal substitute for a more principled approach. For example,
rapidly exploring random tree (RRT) offers no guarantees
of human-like motion, but relies upon a database to bias
the solution towards realism. The database is a bottleneck
for online planning, which can affect algorithm runtime [25].
Other techniques rely upon empirical relationships derived
from the data to constrain robot motion to appear more
human-like. This includes criteria such as joint comfort,
movement time, jerk, [8, 5]; and human pose-to-target rela-
tionships [11, 23]. When motion capture data is used, often
timing is neglected, causing robot manipulation to occur at
unrealistic and non-human velocities [2, 1].



2.2 Existing Human-like Motion Metrics
Human perception is often the metric for quality in robot

motion. By modulating physical quantities like gravity in
dynamic simulations from normal values and measuring hu-
man perception sensitivity to error in motion, studies can
yield a range of values for the physical variables that (ac-
cording to the results of the study) are below the percepti-
ble error threshold (i.e. effectively equivalent to the human
eye) [18, 24]. These techniques are valuable as both syn-
thesis and measurement tools. However, the primary prob-
lem with this type of metric is dependency on human input
to judge acceptable ranges. Results may not be extensible
to all motions without testing new motions with new user
studies because these metrics depend upon quantifying the
measurement device (i.e. human perception).

Classifiers have been used to distinguish between natural
and unnatural movement based on human-labeled data. If
a Gaussian mixture model, HMM, SLDS, naive Bayesian, or
other statistical model can represent a database of motions,
then by training one such model based on good motion-
capture data and another based on edited or noise-corrupted
motion capture data, the better predictive model for testing
would have a higher log likelihood of the test data under
the model. This approach is inspired by the theory that
humans are good classifiers of motion because they have
witnessed a lot of motion. However, data dependence is
the problem, and retraining is necessary when significantly
different exemplars are added [19].

In our literature search, we found no widely accepted met-
ric for human-like motion in the fields of robotics, computer
animation, and biomechanics. By far, the most common
validation efforts rely upon subjective observation and are
not quantitative. For example, the ground truth estimates
produced by computer animation algorithms are evaluated
and validated widely based on qualitative assessment and
visual inspection. Other forms of validation include projec-
tion of motion onto a 2-D or 3-D virtual character to see if
the movements seem human-like [14]. Our work presents a
candidate metric for human-like motion that is quantitative.

3. APPROACH
Human motion is characterized by interdependent degrees-

of-freedom (DOFs) [22]. This implies that the underly-
ing movement data has a level of coordination—the phe-
nomenon that motions of connected bodies or joints are re-
lated in terms of space and timing. Thus, in theory, if you
increase the amount of spatial and temporal coordination
for a given motion, it should become more human-like. In-
tuitively, coordination could be thought of as correlation or
similarity in space and time of two trajectories, but cor-
relation and similarity already have specific mathematical
definitions. Bernstein theorizes that the amount of coordi-
nation in motion may only be limited by constraints (e.g.
kinematic & dynamic limits, environmental, task) [3].

Spatial and temporal coordination of distributed actua-
tors has long been an assumed part of human motion, and
our unique mimicking experiment adds statistical evidence
to this end. Humans have muscles, which inherently cause
coupling, or coordination between DOFs. This basic insight
is key to our metric. Since robots have motors (naturally un-
coupled), we need to emulate human DOF coupling in robot
motion to produce human-like motion. These observations

inspired our experiment to optimize STC within motion and
support STC as an element of human-like motion.

The concept that human muscles cause correspondence
between DOFs may be obvious, but no prior work has ex-
trapolated this to humanoid robot motion, noting the dif-
ference between human and robot actuators, in an effort
to devise a method for synthesizing motion and evaluating
the new hypothesis of whether robot motion is labeled“more
natural”when coordinated spatially and temporally. We felt
it is appropriate to verify the widely accepted truth about
correspondence for human DOFs, which is why we analyze
coordination in both human and robot motion in this work.

Humans’ and robots’ joints typically do not correspond
in terms of location and degrees of freedom. Thus, infor-
mation is lost when attempting to use human motion on
a robot. For example, human translation at the shoulder
will not appear on the robot, if the robot does not have a
translatable shoulder DOF. Since coordination depends on
the interaction between DOFs, then coordination is also lost
along with the motion information lost when trying to apply
human motion to robots.

In section 5.2, we describe a process called retargeting,
which allows human motion to be applied to a robot. How-
ever, even the best retargeting algorithms still lose data in
the transformation process. If sufficient interdependence be-
tween DOFs survives the retargeting process, then we hy-
pothesize that optimizing the remaining trajectories with
respect to STC will re-coordinate the motion given the con-
straints of the new, projected, robot kinematic chain (i.e. as
much as possible given differences in DOF limits/locations).

We hypothesize that coordination will make motion ap-
pear more natural, for both human and robot motion. In
other words, since human motion is spatially and temporally
coordinated, then anthropomorphic robot motion will also
appear more human-like if ST-coordinated. Therefore, we
require an algorithm to synthesize an ST-coordinated (i.e.
more natural) exemplar from a given input motion. Since
our optimization depends on the amount of data surviving
the retargeting process, which is dependent upon DOF sim-
ilarity between the robot and human kinematics, humanoid
robots are more likely to produce better results. Although
in this paper, the optimized motion comes from motion-
capture data, for our algorithm it does not need to come
from motion capture or retargeting; it can come from any-
where (e.g. an animation of any quality, dynamic equations).

4. ALGORITHM
The spatiotemporal correspondence problem has already

been heavily studied and analyzed mathematically for a pair
of trajectory sets, where there is a one-to-one correspon-
dence between trajectories in each set (e.g. two human bod-
ies, both of which have completely defined and completely
identical kinematic hierarchies and dynamic properties) [7,
10]. Given two trajectories x(t) and y(t), correspondence
entails determining the combination of sets of spatial (a(t))
and temporal (b(t)) shifts that map two trajectories onto
each other. In the absence of constraints, the temporal and
spatial shifts satisfy the equations in 1, where reference tra-
jectory x(t) is being mapped onto y(t).

y(t) = x(t′) + a(t)

t′ = t + b(t) (1)



where,
t = time
t′= temporally shifted time variable
x(t)= first reference trajectory
y(t)= second reference or output trajectory
a(t)= set of time-dependent spatial shifts
b(t)= set of time-dependent temporal shifts

The correspondence problem is ill-posed, meaning that the
set of spatial and temporal shifts is not unique. Therefore,
a metric is often used to define a unique set of shifts.

Spatial-only metrics, which constitute the majority of“dis-
tance” metrics, are insufficient when data includes spatial
and temporal relationships. Spatiotemporal-Isomap (ST-
Isomap) is a common algorithm that takes advantage of
STC in data to reduce dimensionality. However, the geodesic
distance-based algorithm at the core of ST-Isomap was not
selected as the candidate metric due to manual tuning of
thresholds and operator input required to cleanly establish
correspondence [9]. Another critical requirement for a met-
ric is nonlinearity, since human motion data is nonlinear.

Prokopenko et. al. used K2 as a metric for STC for mod-
ular reconfigurable robots to identify optimal configurations
that overcome environmental constraints on motion [17, 16].
We take advantage of their temporally extended version of
the K2 metric, which is nonlinear and an upper bound of
Kolmogorov-Sinai entropy (KSE). In short, KSE describes
rate of system state information loss as a function of time.
Therefore, a lower value of K2 is more optimal, since it indi-
cates higher retention of system state information over time.

4.1 STC as a Synthesis Tool
In order to use K2 to synthesize coordinated motion, two

things are required: an optimization algorithm that can op-
timize with respect to a cost (or objective) function and one
input motion to use as the basis (or reference) trajectory for
the optimization. The K2 metric presented in equation 3
becomes the cost function used in the optimization, with a
K2 value of zero being the target for the optimal solution.

Optimal control and dynamic time warping (DTW) are
two examples of well-known approaches that can yield a so-
lution for the optimal set of spatial and temporal shifts that
solve the correspondence problem with respect to a cost or
objective function, given the reference trajectory [20]. For
example, if these were selected to generate optimized (i.e.
coordinated) motion, the equation in 3 would be used as the
cost function for either optimal control or DTW. Dynamic
time warping is solved via dynamic programming [20].

During development, we optimized motion using both these
algorithms, but in the end selected DTW as the algorithm
to warp a trajectory with respect to our human-like metric
(subject to constraints) because nonlinear optimal control
formulations can be difficult to solve; however, the optimal
control solution is known if the cost function is quadratic
[22]. Given the constraints of robot actuators (e.g. finite
space), the required convexity for an optimal control solu-
tion is handled by squaring the individual spatial and tem-
poral terms on the right-hand side of our metric presented
in equation 3. The new squared version still satisfies K2 as
an upper bound of KSE. However, the squared version is
a less strict bound, which means that the minimum value
of equation 3 is higher for optimal control due to the con-
straints of optimal control motion synthesis. In other words,

an optimal control problem formulated by squaring individ-
ual K2 terms has less potential to optimize coordination.
Thus, DTW was selected over optimal control for synthesis.

The K2 metric presented in equation 3 constrains the
amount of warping in its three parameters: r, S, and T.
The value r can be thought of as a resolution or similarity
threshold. Every spatial or temporal pair below this thresh-
old would be considered equivalent and everything above it,
non-equivalent and subject to warping. We empirically de-
termined a 0.1 N.m. threshold for r on our robot hardware.

To emulate the local coupling exhibited in human DOFs
(e.g. ball-and-socket joints) on an anthropomorphic robot,
which typically has serial DOFs, the spatial parameter, S,
was selected to optimize based only on parent and chil-
dren degrees-of-freedom, in the hierarchical anthropomor-
phic chain. Since our study, described in section 6, used
predefined motions, temporal extent varied based on the se-
quence length for a given motion.

C(ds,dt)(S, T, r) = (2)
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where,
Θ(...) = Heaviside step function

V k
i = [wk

i , ..., wk+ds−1
i ] , spatiotemporal delay

vectors
wk

i = [vk
i , ..., vk

i+dt−1] , time delay vectors
vk

i = element of time series trajectory for
actuator k at time index i

ds = spatial embedding dimension
dt = temporal embedding dimension
S = number of actuators
T = number of motion time samples
r = correspondence threshold

In our work, the term “spatial” warping is synonmyous
with torque magnitude, since the given reference trajectories
are torques for each DOF as a function of time.

4.2 STC as an Evaluation Metric
In order to use STC as a mechanism to evaluate motion

quality with respect to human-likeness, we evaluate the spa-
tial and temporal correspondence numbers on the right-hand
side of equation 3 for a trajectory. Then, we follow the
procedure outlined under 4.1 to optimize that trajectory
with respect to spatial and temporal correspondence. Since
this paper demonstrates that coordinated motion is more
human-like, the difference between the optimal and origi-
nal spatial and temporal numbers from equation 3 indicate
“human-likeness” of the original trajectory. If the difference
is small, the original trajectory is closer to being human-like.

5. IMPLEMENTATION



(a) Virtual
Human.

(b) Simon

Figure 1: The two platforms used in our experiment.

5.1 Research Platform
The platform for this research is an upper-torso humanoid

robot we call Simon (Figure 1(b)). It has 16 controllable
DOFs on the body and four on each hand. Each arm has
seven DOFs (three at the shoulder, one at the elbow, and
three at the wrist) and the torso has two DOFs, with one
additional uncontrollable slave joint in the torso fore/aft di-
rection. Simon has three DOFs for the eyes, two per ear,
and four for the neck.

5.2 STC Application
Any input robot motion can be spatially and temporally

coordinated using the algorithm described above, but in our
evaluation we use trajectories collected from human motion-
capture equipment and then retargeted to the Simon robot.
The motion-capture trajectories include position data from
the 28 upper-body markers on the suit. A similar set of
constraints or handles, which are positioned on the target
kinematic heirarchy (i.e. the robot model), serve to suffi-
ciently constrain the problem so the mapping between hu-
man motion capture markers and robot markers is one-to-
one. An optimization problem is solved, iterating over the
human motion capture data as a function of time, align-
ing human and robot markers. The optimal mapping allows
for scaling the overall size of Simon based on human par-
ticipant’s size, given that the proportions of Simon’s parts
remain constant with respect to each other. This ensures
maximum amount of information preservation over the re-
targeting process. Upon termination of the optimization, a
set of 28 time-varying point constraints exist on the robot
body that align optimally with the human constraint mark-
ers from the motion-capture data. The time-varying point
constraints on the robot create a motion trajectory, in Simon
joint angles, that can be executed on the robot [26]. Then
this retargeted motion is optimized with respect to STC as
described in Sec. 4.1. Our hypothesis is that this makes the
motion more human-like on the robot hardware.

6. EVALUATION
The purpose of this evaluation is to quantitatively support

that spatiotemporal correspondence of distributed actuators
is a good metric for human-like motion.

6.1 Hypotheses

Since human motion exhibits spatial and temporal cor-
respondence, robot motion that is more coordinated with
respect to space and timing should be more natural. Thus,
we hypothesize that STC is a metric for human-like motion.

In order to test this hypothesis, we require a quantita-
tive way to measure naturalness. We cannot optimize mo-
tion with respect to our metric and use distance measures
between human and robot motion variables (e.g. torques,
joint angles, joint velocities) due to the DOF correspondence
problem. Given that no naturalness measure exists, we de-
signed a user-study based on mimicking. In short, we have
people mimic robot motions created by different motion syn-
thesis techniques and the one that humans can mimic “best”
(to be defined later) is the technique that generates the most
human-like motion. Thus, our experiment relies on the idea
that a human-like motion will be easier for people to mimic
accurately. And, since practice makes perfect, we look only
at people’s first mimicking attempt. We theorize that awk-
ward, less natural motions will be harder to mimic, people
will be less coordinated with the seen motion.

6.2 Experimental Design
We look for differences in mimicking performances across

the three experimental groups of stimulus motion:

• OH: Twenty motions were captured by a single male
(one of the authors), we call this data“original human”.

• OR: The human motions were retargeted to the Si-
mon hardware using the position constraint process
described in section 5.2. We call this the “original re-
targeted” data set.

• OC: The retargeted motion was then coordinated us-
ing the algorithm and metric described in section 4.
This set of motions is called “original coordinated.”

The twenty motions included common social robot ges-
tures with and without constraints such as waving and object-
moving, but also nonsense motions like air-guitar.1

In the experiment, participants are shown a video of a
motion and then asked to mimic it. The OR and OC mo-
tion trajectories were videotaped on the Simon hardware
from multiple angles for the study. Similarly, the original
human motion was visualized on a simplified virtual human
character (Fig. 1(a)); also recorded from multiple angles.

Forty-one participants (17 women and 24 men), ranging
in ages from 20-26 were recruited for the study. Each par-
ticipant saw a set of twelve motions from the possible set
of twenty, randomly selected for each participant in such a
way that each participant received four OH, four OR, and
four OC motions each. This provided us with a set of 492
mimicked motions total (i.e. 164 motions from each of three
groups, with 8-9 mimicked examples for each of 20 motions).

6.2.1 Part One - Mo-cap Data Collection
Each participant was equipped with a motion capture suit

and told to observe videos projected onto the wall in the mo-
cap lab. They were instructed to observe each motion as

1The accompanying video shows several examples. The full
set of the motions used is: shrug, one-hand bow, two-hand
bow, scan the distance, worship, presentation, air-guitar,
shucks, bird, stick ’em up, cradle, take cover, throw, clap,
look around, wave, beckon, move object, and call/yell.



long as necessary (without moving) until they thought they
could mimic it exactly. The videos looped on the screen
showing each motion from different view angles so partici-
pants could view each DOF with clarity. Unbeknownst to
them, the number of views before starting was recorded as a
measure for the study. When the participant indicated they
could mimic the motion exactly, the video was turned off
and the motion capture equipment was turned on, and they
mimicked one motion. Since there is a documented effect
of practice on coordination [12], we capture only their ini-
tial performance. This process was repeated for all twelve
motions. Every person’s first motion was treated as a prac-
tice motion and is not included in our analyses. Only if a
participant was grossly off with respect to timing or some
other anomaly occurred, were suggestions made about their
performance before continuing. This happened in two cases.

Constraints accompanied some motions, such as objects
or eye gaze direction. These constraints were given to the
participants when necessary to facilitate ability to mimic ac-
curately. For example, a cardboard box and two stools were
given for the object moving motion. For all participants, the
constraint locations and the standing position of the partici-
pant were identical. When constraints were given, they were
given in all cases (i.e. OH, OR, and OC).

After each motion the participant was asked if they rec-
ognized the motion, and if so, what name they would give
it (e.g. wave, beckon). Participants did not select motion
names from a list. After mimicking all twelve motions, the
participant was told the original intent (i.e. name) for all 12
motions in their set. They were then asked to perform each
motion unconstrained, as they would normally perform it.
This data was recorded with the motion captured equipment
and is labeled the “participant unconstrained” (PU) set.

While the participants removed the motion capture suit,
they were asked which motions were easiest and hardest to
mimic and which motions were easiest and hardest to recog-
nize. They gave their reasoning behind all of these choices.

Thus, at the conclusion of part one of the experiment, the
following data had been collected for each participant:

• Motion capture data from 12 mimicked motions:

– 4 “mimicking human” (MH) motions
– 4 “mimicking retargeted” (MR) motions
– 4 “mimicking coordinated” (MC) motions

• Number of views before mimicking for each of the 12
motions above

• Recognition (yes/no) for each of the 12 motions

• For all recognizable motions, a name for that motion

• Motion capture data from 12“participant unconstrained”
(PU) performances of the 12 motions above.

• Participant’s selection of:

– Easiest motion to mimic, and why
– Hardest motion to mimic, and why
– Easiest motion to recognize, and why
– Hardest motion to recognize, and why

6.2.2 Part Two - Video Comparison
After finishing part one, participants watched pairs of

videos for all twelve motions that they had just mimicked.
The participant would watch the OR and OC versions of

Table 1: Percent of motion recognized correctly, in-
correctly, and not recognized by participants.

Human (OH) Retarg (OR) Coord (OC)
% correct 72.1 46.6 87.2
% incorrect 19.4 42.3 9.1
% not recog. 8.5 11.0 3.7

the robot motion one after the other, but projected in dif-
ferent spatial location on the screen to facilitate mental dis-
tinction. The order of the two versions was randomized.
The videos were shown once each and the participants were
asked if they perceived a difference. Single viewing was cho-
sen because it leads to a stronger claim if difference is noted
after only one comparison viewing. Then, the videos were
allowed to loop serially and the participants were asked to
watch the two videos and tell which they thought looked
“better” and which they thought looked more natural. The
participants were also asked to give reasons for their choices.
Unbeknownst to them, the number of views of each version
before deciding was also collected.

Thus, at the conclusion of part two of the experiment, the
following data had been collected for each participant:

• Recognized a difference between OR and OC motion
after one viewing (yes/no); for each of 12 motions mim-
icked in Part One (section 6.2.1)

• For motions where a difference was acknowledged,

– Selection of whether OR or OC is “better”
– Selection of whether OR or OC is more natural

• Rationale for “better” and more natural selections

• Number of views before better/natural decisions

7. RESULTS

7.1 Coordination Increases Recognition
The results from our study allow us to conclude that STC

optimized motion makes robot motion easier to recognize.
The data in table 1 represents the percentage of partici-
pants who named a motion correctly and incorrectly, as well
as those who opted not to try to identify the motion (i.e.
not recognized). This data is accumulated over all 20 mo-
tions and sorted according to the three categories of stimu-
lus video: OH, OR, and OC. Coordinated robot motion is
correctly recognized 87.2% of the time, and is mistakenly
named only 9.1% of the time. These are better results than
either human or retargeted motion. Additionally, coordinat-
ing motion leads human observers to try to identify motions
more frequently than human or retargeted motion (i.e. not
recognized = 3.7% for OC). This suggests that coordinating
motion makes the motion more familiar or common.

Considering the data from table 1 on a motion-by-motion
basis, percent correct is highest for 16/20 coordinated mo-
tions and lowest for 17/20 retargeted motions. In 17/20
motions % incorrect is lowest for coordinated motions, and
in a different set of 17/20 possible motions, % incorrect is
highest for retargeted motion. These numbers support the
aggregate data presented in table 1 suggesting that nam-
ing accuracy, in general, is higher for coordinated motion,



Table 2: Percent of responses selecting types of mo-
tions as easiest and hardest motion to recognize.

Human (OH) Retarg (OR) Coord (OC)
Easiest 14.8 9.9 75.3
Hardest 11.5 78.3 10.2

and lower for retargeted motion. Comparing only coordi-
nated and retargeted motion, % correct is highest for 19/20
possible motions, and in a different set of 19/20, % incor-
rect is highest for retargeted motion. This data implies that
relationships for recognition comparing retargeted and coor-
dinated robot motion are maintained, in general, regardless
of the particular motion performed. For reference, overall
recognition of a particular motion (aggregate percentage) is
a function of the motion performed. For example, waving
was correctly recognized 91.7% of the all occurrences (OH,
OR, and OC), whereas imitating a bird was correctly recog-
nized overall only 40.2% of the time.

Our subjective data also supports the conclusion that co-
ordinated motion is easier to recognize. Participants were
asked which of the 12 motions that they mimicked was the
easiest and hardest to recognize. Table 2 shows the percent-
age of participants that chose an OH, OR, or OC motion,
indicating that 75.3% of participants chose a coordinated
motion as the easiest motion to recognize, while only 10.2%
chose a coordinated motion as the hardest motion to rec-
ognize. A large majority of participants (78.3%) selected a
retargeted motion as the hardest motion to recognize.

When asked, participants claimed that coordinated mo-
tion was easiest to recognize because it looked better, more
natural, and was a more complete and detailed motion. On
the other hand, retargeted motion was hardest because it
looked “artificial” or “strange” to participants.

The majority of participants agree that coordinated mo-
tion is “better” and more natural. In 98.98% of the trials,
participants recognized a difference between retargeted and
coordinated motion after only one viewing. When difference
was noted, 56.1% claimed that coordinated motion looked
more natural (27.1% chose retargeted), and 57.9% said that
coordinated motion looked “better” (compared with 25.3%
for retargeted). In the remaining 16.8%, participants (unso-
licited) said that “better”/more natural depends on context,
and therefore they abstained from making a selection. Par-
ticipants who selected coordinated motion indicated they
did so because it was a “more detailed” or “more complete”
motion, closer to the “expectation” of human motion.

Statistical significance tests for the results in tables 1 and
2 were not performed due to the nature of the data. Each
number is an accumulation expressed as a percentage. The
data is not forced choice; all participants are trying to cor-
rectly recognize the motion; some attempt and fail, and some
do not attempt because they cannot recognize the motion.

7.2 Coordination Makes Motion Human-Like
Four sets of motion-capture data exist from the first part

of the experiment (section 6.2.1): mimicking human (MH),
mimicking retargeted (MR), mimicking coordinated (MC),
and participant unconstrained (PU) motion. Analysis must
occur on a motion-by-motion basis. Thus, for each of the
20 motions, there is a distribution of data that captures
how well participants mimicked each motion. For each par-

ticipant, we calculate the spatial (SC) and temporal (TC)
correspondence according to equation 3, which resolves each
motion into two numbers, one for each term on the right-
hand side of the equation. For each motion, 8-9 partici-
pants mimicked OH, OR, and OC. There is three times the
data for the unconstrained version because regardless which
constrained version a participant mimicked, they were still
asked to perform the motion unconstrained. Thus for anal-
ysis we resolve MH, MR, MC, and PU into distributions for
SC and TC across all participants. There are separate distri-
butions for each of the 20 motions, yielding 4 x 2 x 20 unique
distributions. Now, our goal is to analyze each of the SC and
TC results independently on a motion-by-motion basis, in
order to draw conclusions about MH, MR, MC, and PU. We
use ANOVAs to test the following hypotheses:

• H1: Human motion is not independent of constraint.
In other words, all the human motion capture data,
(MH, MR, MC, and PU) does not come from the same
distribution. The F values, for all twenty motions,
ranged from 7.2 to 10.8 (spatial) and 6.9 to 7.6 (tem-
poral) which is greater than Fcrit = 2.8. Therefore, we
conclude at least one of these distributions is different
from the others with respect to SC and TC.

• H2: Mimicked motion is not independent of constraint.
In other words, all mimicked (i.e. constrained) data,
(MH, MR, and MC) come from the same distribution.
In these ANOVA tests, values for all 20 motions ranged
between 6.1-8.6 (spatial) and 5.3-6.6 (temporal), which
are greater than Fcrit = 3.4-3.5. Therefore, we con-
clude that at least one of these distributions for mim-
icked motion is statistically different.

• H3: Coordinated motion is indistinguishable from hu-
man motion in terms of spatial and temporal coordina-
tion. MH, MC, and PU motion all come from the same
distribution. Fobserved of 0.6-1.1 (spatial) and 0.9-1.9
(temporal), which are less than Fcrit of 3.2-3.3, mean-
ing that with this data there is insufficient evidence to
reject this hypothesis for all twenty motions.

Since we are able to isolate that retargeted motion is dif-
ferent from the other spatial and temporal correspondence
distributions in mimicked motion, at this point, we perform
pairwise t-tests to determine the difference between data sets
on a motion-by-motion basis. Table 3 shows the number of
motions for which there is a significant difference in spa-
tial correspondence (the table on temporal correspondence
is identical but not shown). For example, when participants
mimic retargeted motion, twenty motions are statistically
different than the original retargeted performance. However,
for mimicking human or coordinated motion, the distribu-
tions fail to be different from their original performance for
both spatial and temporal coordination (H3). From this,
we conclude that humans are not able to mimic retargeted
motion as well as the coordinated or human motion.

Since the above statistical tests do not allow us to conclude
that distributions are identical (H3), we present a regression
analysis of the data across all twenty motions to determine
how correlated any two variables are in our study. For the
purpose of this regression analysis the variables are either
the mean or the standard deviation of SC, TC, or STC, for
each of the distributions (OH, OR, OC, MH, MR, MC, PU).



Table 3: Number of motions with p<0.05 for pair-
wise spatial correspondence comparison t-tests for
the indicated study variables. Note: Table is iden-
tical for temporal correspondence.

OH OR OC MH MR MC PU
OH X 20 0 0 20 0 0
OR X X 20 20 20 20 20
OC X X X 0 20 0 0
MH X X X X 20 0 0
MR X X X X X 20 20
MC X X X X X X 0
PU X X X X X X X

Table 4: R2 value from linear regression analysis on
spatial (SC), temporal (TC) and composite mean
coorespondence (STC) for pairs of variables. R2 =
1 (perfectly correlated); 0 = (uncorrelated). Note
the high correlation between mimicked human and
coordinated motions seen in row 14.

Variables SC TC STC
1 OH v. MH 0.9783 0.9756 0.9914
2 OH v. MR 0.6339 0.0427 0.5483
3 OH v. MC 0.9792 0.965 0.9933
4 OH v. PU 0.9859 0.9378 0.9843
5 OR v. MH 0.0103 0.0009 0.0022
6 OR v. MR 0.0915 0.008 0.0526
7 OR v. MC 0.0001 0.0002 0.0004
8 OR v. PU 0.0011 0.0003 0.0001
9 OC v. MH 0.9494 0.9626 0.9819
10 OC v. MR 0.6084 0.0491 0.5176
11 OC v. MC 0.9834 0.962 0.9918
12 OC v. PU 0.9836 0.9414 0.9795
13 MH v. MR 0.6412 0.0421 0.5612
14 MH v. MC 0.9531 0.9749 0.9809
15 MH v. PU 0.969 0.9271 0.9756
16 MR v. MC 0.6728 0.0516 0.5365
17 MR v. PU 0.6414 0.017 0.5076
18 MC v. PU 0.9881 0.9144 0.9822

However, OH, OR, and OC are only one number (not a dis-
tribution) so they are not included in the standard deviation
analysis. The intuition for this analysis is that if two vari-
ables are highly correlated with respect to both mean and
variance, then it is further evidence that their distributions
are similar. Specifically, we seek results showing high corre-
lation between the human and coordinated motions.

These results, the R2 values from the linear data fits, are
shown in tables 4 and 5. This shows that participants mim-
icking coordinated and human motion are highly correlated
(line 14 in table 4 and line 2 in table 5, lightly shaded),
whereas participants’ mimicking retargeted motion is less
correlated to all other data including the original human
performance (lines 2, 6, 10, 13, and 16 in table 4). In short,
this means that any data with high correlation would be a
excellent linear predictor of the other variable in the pair.
These higher correlations between human and coordinated
motion are further evidence that coordinated motion is more
human-like than retargeted motion.

Table 5: R2 value from linear regression analysis on
standard deviation of spatial, temporal and compos-
ite correspondence for pairs of study variables. R2 =
1 (perfectly correlated); 0 = (uncorrelated). Vari-
ables not shown have a standard deviation of 0. Note
the high correlation between mimicked human and
coordinated motions seen in row 2.

Variables SC TC STC
1 MH v. MR 0.1005 0.1231 0.3507
2 MH v. MC 0.8847 0.7435 0.9842
3 MH v. PU 0.0674 0.0906 0.8348
4 MR v. MC 0.0746 0.1749 0.346
5 MR v. PU 0.5002 0.0002 0.2239
6 MC v. PU 0.0986 0.096 0.8537

Table 6: Percent of responses selecting types of mo-
tions as easiest and hardest motion to mimic.

Human (OH) Retarg (OR) Coord (OC)
Easiest 14.6 9.8 75.6
Hardest 31.7 56.1 12.2

Furthermore, the standard deviation correlation on line 3
in table 5 is low for the spatial and temporal components,
which shows that mimicking does in fact constrain people’s
motion. Variance increases for the PU distribution because
humans are free to perform the motion as they please. This
validates our premise in this study that mimicking perfor-
mance is a method by which to compare motion.

The data taken for number of views before mimicking
(NVBM) also supports the claim that coordinated motion
is more human-like. On average, humans view a retargeted
motion more before they are able to mimic (3.7 times) as
compared to coordinated motion (2.7 times) or human mo-
tion (2.4 times). Pairwise t-tests between these, on a motion-
by-motion basis for NVBM, show that 19 of 20 retargeted
motions exhibit statistical significance (p<0.05) when com-
pared with human NVBM whereas only 3 of 20 coordinated
motions NVBM are statically different (p<0.05) from human
NVBM. This suggests coordinated motion is more similar to
human motion in terms of preparation for mimicking.

Of the 12 mimicked motions, each participant was asked
which motion was easiest and hardest to mimic. Of all
participant responses, 75.6% of motions chosen as easiest
were coordinated motions, and only 12.2% of participant
responses chose a coordinated motion as hardest to mimic
(table 6). We return to our assertion stated earlier where we
claimed that a human would be able to more easily mimic
something common and familiar to them. Our results sug-
gest that coordination adds this quality to robot motion,
which improves not only ability to mimic, as presented ear-
lier, but also perception of difficulty in mimicking (table 6).

During questioning we gained insight into people’s choices
of easier and harder to mimic. Participants felt that human
and coordinated motion were “more natural” or “more com-
fortable.” Participants also indicated that human and coor-
dinated motion are easier to mimic because the motion is
“more familiar,”“more common,” and “more distinctive.” In
comparison, some people selected retargeted motion as be-
ing easier to mimic because fewer parts are moving in the



motion. Others said retargeted motion is hardest to mimic
because the motion felt “artificial” and “more unnatural.”

7.3 SC and TC are better than STC
In equation 3, the individual terms (spatial and temporal)

on the right-hand side can be evaluated separately, rather
than summing to form a composite STC. In our analysis,
when the components are evaluated individually on a motion-
by-motion basis, 20 of 20 retargeted motions exhibit statisti-
cal difference (p<0.05) from the human mimicked data and 0
of 20 coordinated motions exhibit correspondence that is not
statistically different (p>0.05) than human data distribution
(table 3). However, with the composite STC used as the
metric, only 16 of 20 retargeted motions are statistically dif-
ferent than the original human performance (p<0.05). Thus,
we recommend the SC/TC individual components be used
independently as a metric for human-likeness.

8. CONCLUSION
We have demonstrated a metric that can be used to syn-

thesize and evaluate motion. If the goal of anthropomorphic
robots is to communicate with humans as humans commu-
nicate with each other, then robot motion can be improved
with this metric to create more human-like motion.

We presented spatial and temporal correspondence (i.e
motor coordination) as an quantitative metric for human-
like motion. We also presented objective and subjective data
to support our claims that motion optimized with respect to
STC is more human-like and easier to recognize, and there-
fore has benefits for human-robot interaction. Our metric
is useful as both a tool for human-like motion synthesis for
anthropomorphic robots and as a measurement instrument
for the evaluation of human-like motion.
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