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Abstract— Human-robot interaction research to date has in-
vestigated intent recognition and communication separately. In
this paper, we explore the effects of integrating both the robot’s
ability to generate intentional motion and predict the human‘s
motion in a collaborative physical task. We implemented an
intent recognition system to recognize the human partner‘s
hand motion intent and a motion planner system to enable the
robot to communicate its intent by using legible and predictable
motion. We tested this bi-directional intent system in a 2-way
within-subjects user study. Results suggest that an integrated
intent recognition and communication system may facilitate
more collaborative behavior among team members.

I. INTRODUCTION

Successful social robot teammates deployed for the long
term will need the capability to reason about human in-
tentions as well as communicate their own intentions. Un-
derstanding intent includes recognizing the current activity,
inferring the task goal, and predicting future actions. Humans
easily infer and communicate intent and this capability is
particularly critical during collaborative activities. For in-
stance, playing team sports, assembling furniture together,
and preparing a meal together all require seamless coordi-
nation among the collaborators in which good predictions
of others’ future actions as well as displaying transparent
intentional behavior are both important. In the assembling
furniture scenario, for example, as soon as one person starts
handing over a tool, the other person knows to reach for
it. In a cooking scenario, both collaborators may need to
add ingredients at the same time. The dynamics of the
interaction changes rapidly between intent recognition and
communication. Thus part of being a good collaborator is
anticipating other’s needs and responding appropriately as
well as communicating its own needs. In our work, we show
that a robot that is able to both recognize and communicate
intent results in better overall team performance.

Prior work in human-robot interaction (HRI) research to
date has only investigated intent recognition and communi-
cation separately. In this work, we take a holistic approach
by exploring the effects of both intent recognition and
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Fig. 1. The task utilized in this study consisted of collaboratively emptying
cups into bins. There are four conditions. In the conditions with IR Absent,
intent is detected after the cup is grasped whereas with IR Present, intent is
detected prior to grasping. With Predictable Motion, bin selection inference
is delayed until the gripper is close to the bin whereas with Legible Motion,
the inference occurred earlier.

communication in a human-robot collaborative cup pouring
task. We evaluate our work in a scenario where a robot
and human collaborate need to pick up two different cups
and pour them into the same target container, and where
the human gets first choice of cup and the robot chooses
the target. In order for the robot to select a different cup
from the human, it uses intent recognition to infer which cup
the human intends to pick up. The robot then uses its arm
motion trajectory to communicate which container it intends
to empty the cup into, so that the human can infer the robot’s
intention and pour into the same container. We implemented
an integrated system that consist of an intent recognition
system to enable the robot to recognize the human’s hand
motion intent and a motion planner system to enable the
robot to communicate its intent by displaying legible and
predictable motion.

We conduct a 2-way within-subjects user study to evaluate
the integrated system in four conditions (Figure 1). We show
that when the robot recognizes and communicates intent it
results in more collaborative behavior in the team.

II. RELATED WORK

In the HRI domain, prior work covered two categories:
intent recognition and intent communication. For intent
recognition, Hoare and Parker [1] used Conditional Random



Fields to classify the human’s intended goal in a box pushing
task. Another method used object affordances to anticipate
the human’s next activity in order to enable the robot to plan
ahead for a reactive response [2]. Mainprice and Berenson
[3] developed a framework where the motion planner takes
into account an estimation of the workspace the human
will occupy and showed that this leads to safer and more
efficient team performance. Other research also explored
how to enable robots to anticipate collaborative actions in
the presence of uncertain sensing and task ambiguity. One
approach consisted of using probabilistic graphical model
of the structured tasks to allow the robot to appropriately
time its actions [4]. Another approach utilized anticipatory
knowledge of the human motions and subsequent actions
to predict the human’s reaching motion goal in real-time
[5]. Gaze patterns are used to predict the human’s intent
to achieve efficient human-robot collaboration [6].

Besides understanding intent, robots must be able to
also communicate their own intentions. Prior HRI work is
inspired by animation techniques and focused on designing
human-like robot behavior so that they are intuitive to
understand [7]. For instance, different levels of a robot’s
exaggerated motion is perceived differently by the human
collaborator and also affected the retention of the inter-
action details [8]. Gielniak and Thomaz showed that the
spatiotemporal correspondence of actuators can be used to
generate motions that better convey intent [9], [10]. Besides
manipulation motions, navigation motions including free-
flyer robots followed a similar approach to communicate path
intentionality [11].

Dragan et al. introduced an approach that takes into
account an observer into motion planning [12]. This resulted
in motions that are predictable (i.e., motion that matches
what the collaborator would expect to see given a goal) and
legible (i.e., motion that expresses the robot’s intent and
allows the collaborator to quickly and confidently identify
the goal). They showed that legible motion resulted in
more fluid collaborations as in comparison to predictable
motion [13]. The intent communication aspect of our work
is based on these results. Our work took a holistic approach
and investigated intention as a bi-directional interaction. We
implemented an integrated intent recognition and communi-
cation system and investigated its effects on the human-robot
team performance.

III. INTENT RECOGNITION

In this work, we infer human intent by recognizing
whether the person is reaching to the left/right of the
workspace. There are two intent recognition systems com-
pared in this study: object intent recognition and hand motion
intent recognition. We hypothesize that the hand motion
intent system would enable the robot to predict the human’s
intent faster as in comparison to the object intent recognition.
Since our task is a collaborative cup pouring task where
the human gets to select a cup first, the hand motion intent
system would detect which cup the human selects before the
human grabs the cup. On the other hand, the object intent
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Fig. 2. The integrated intent recognition and generation system consists
of four modules. The intent recognition and motion execution modules are
set according to the experimental conditions.

recognition system would predict the selection of the cup
later, i.e., after the human has already grabbed the cup. These
are the two intent recognition systems (absent vs. present)
that we will later use in our user study.

At a high level, the object intent recognition system detects
intent through objects being moved in the scene. In order to
accomplish this, we use planar segmentation to identify the
cups on the table and extract the presence/absence state of
each cup. At each time step, the object intent recognition
module looks for changes between the current and previous
state. If a change is detected, this module outputs the side
that has an object removed as the human’s intent. This
provides a baseline intent recognition system, as the robot
only recognizes intent after an object has been moved.

The hand motion intent recognition system detects human
intent by tracking the motion of a blue-colored glove worn
by the human teammate over time. We use classification (left
cup vs. right cup intent) based on thresholds on the motion
vector direction where the thresholds were tuned empirically
for a table top interaction, face to face with the robot.

IV. MOTION PLANNING

Following the formalism defined by Dragan in [12], two
motion planners are used in this study: a predictable planner
and a legible planner. Predictable motion is the motion that
is most efficient according to some cost function C over
the trajectory ξ and can be generated through trajectory
optimization. Given that our experimental task will be per-
formed in a largely obstacle free environment, all predictable
motions are set to be straight line trajectories from the start
to goal.

Legible motion, in contrast, should aid the observer in
the inference of the intended goal (action-to-goal inference).
This requires modeling the observer’s probability distribu-
tion over goals given trajectory segments. Following [12],
a trajectory’s legibility score is the normalized weighted
summation of probabilities assigned to the robot’s goal, GR,
across the trajectory with weights set according to f (t):



LEGIBILITY[ξ ] =

∫
P(GR|ξS→ξ (t)) f (t)dt∫

f (t)dt
(1)

where ξS→ξ (t) denotes the trajectory segment from the start-
ing configuration (S) to the configuration at time t (ξ (t)). In
this work, we use f (t) = T − t with T being the total time.
This gives more weight to earlier parts of the trajectory. Thus,
the optimal legible trajectory ξ ∗ can be generated through
trajectory optimization such that

ξ
∗ = argmax

ξS→GR

LEGIBILITY[ξ ] (2)

As shown in [12], this objective can be optimized through
an iterative gradient ascent algorithm. We initialize the
algorithm with a straight line path between the start and goal.

V. EXPERIMENTAL DESIGN

To investigate the effects of intent recognition and leg-
ible motion on human-robot collaboration, we propose a
counterbalanced 2-way within-subjects study. We anticipate
that both intent recognition and motion type will affect the
collaboration along both objective and subjective measures.
In addition, we expect users’ perception of the robot’s
performance to be higher when both intent recognition and
legible motion are present.
• H1 - Objective Measures of Collaboration:

1) Legibility will improve objective measures of col-
laboration.

2) Intent recognition will improve objective measures
of collaboration.

• H2 - Perceptions of Collaboration:
1) Legibility will positively affect perceptions of col-

laboration.
2) Intent recognition will positively affect perceptions

of collaboration.
• H3 - Subjective Performance Rating:

1) Combined legible motion and intent recognition
will be rated as better performing than either alone
and over baseline.

A. Experimental Tasks

The task is setup as a pouring scenario where the robot and
participant empty cups into the same container as shown in
Figures 3 and 4 and the video attachment. We select this task
because it is 1) collaborative, 2) requires both the robot and
human recognize and communicate intent, and 3) repeatable
across the conditions. For each round, the participant selects
a cup that is either located on the right or left of the bins, and
the robot tries to infer the correct side (intent recognition) in
order to select the cup from the opposite side. The robot then
empties its cup in one of the two bins first and the participant
is required to empty his cup in the same bin as the robot’s,
inferring the correct bin via the robot’s arm motion. Both
the human and robot place the cups back in their original
positions and then repeats the task. In order to enforce turn-
taking, the participant is told that they must wait for the robot

to take a photo of the scene. Upon hearing a camera shutter
sound, the participant begins the next round by selecting a
new cup. Each condition has four rounds. Neither the robot
nor the participant know each other’s goal a priori.

B. Independent Variables

The independent variables are intent recognition (absent
vs. present) and motion type (predictable vs. legible). No
intent recognition (IR Absent) means that when it is the
robot’s turn to select a cup, it makes its decision based on the
available cups on the table, as per Section III. At this point,
the participant would have already removed a cup from the
table. The presence of intent recognition (IR Present) means
that the robot predicts which cup the participant is going
to grab before the participant actually grabs the cup, as per
Section III. There were four conditions: Baseline (IR Absent
and Predictable), IR Present and Predictable, IR Absent and
Legible, IR Present and Legible.

C. Integrated Intent Recognition and Generation System

Testing the four conditions described in Section V-B re-
quires an integrated intent recognition and generation system.
The high-level system diagram is shown in Figure 2. This
system is composed of four modules: segmentation, state
extraction, intent recognition, and motion execution. The
segmentation and state extraction modules are described in
Section III.

The intent recognition module informs the motion execu-
tion module of the human’s intent. Since intent recognition is
one of our manipulated variables, this module is instantiated
in one of two ways depending on the experimental condition:
baseline object-based intent recognition (Section III) and
hand motion-based intent recognition (Section III).

The motion execution module is triggered to pour from
a cup upon intent recognition. Using the state information
provided by the state extraction module, motion execution
instructs the robot to grasp one of the remaining objects
on the opposite side of the detected intent. The robot arm
then returns to the home position from which it will then
empty the cup in one of the two bins. The type of trajectory
the robot executes is varied according to the experimental
condition. All other trajectory segments display predictable
motion. The robot’s decision of which specific cup to grab
and which bin to empty the cup in are randomly selected to
prevent participants from guessing a pattern. All trajectories
are pre-generated. The execution time for legible motion is
60.5 sec and predictable motion is 62.0 sec. This small dif-
ference of 2.5% is negligible compared to the total execution
time.

D. Participants

A total of 18 participants, 5 females and 13 males,
participated in the study. All the participants were university
students. To enable participants to compare the four con-
ditions, the experiment used a within subjects design. The
order of the conditioned were counterbalanced to control for
order effects.



(a) Object Intent (b) Hand Motion Intent

Fig. 3. The two intent recognition modules detect intent at different times during the cup selection phase. The object intent system (a) detects intent only
after the cup is grasped, while the hand motion intent system (b) can successfully detect intent before the cup is grasped.

(a) Predictable Motion (b) Legible Motion

Fig. 4. The two motion planners result in the human correctly identifying the robot’s intended goal at different times during the bin selection phase.
Under predictable motion (a), goal inference (bin selection) is delayed until the gripper is near the intended bin. Under legible motion (b), goal inference
occurs earlier in the trajectory.

E. Procedure

First, participants were briefed on the collaborative task
and were informed that four different robot “programs”
were being tested. They were also asked to wear a blue
glove during the duration of the study. The participants
practiced the task once under the Baseline condition. Then,
they performed the task under each condition. After each
condition, they completed a brief questionnaire. At the end
of the study, a post-study questionnaire was administered.

F. Dependent Measures

The dependent measures include both objective and sub-
jective measures. The objective measures are:
• Human’s initial intent recognition time: This is the

amount of time it takes the human to initially infer the
robot’s bin selection. This time starts from the moment
that the robot starts moving to the bin until the human
starts moving their cup towards the predicted bin.

• Human’s final intent recognition time: This is the
time period where the human starts moving their cup
towards the predicted bin and starts to pour the cup
into the bin. The human’s prediction of the robot’s bin
selection is confirmed when they start to pour the cup.

• Percentage of overall concurrent motion: This is the
amount of concurrent motion divided by the total task

time. The total task time is defined as the time when the
human’s hand starts moving to the start of the pouring
which could be the human or the robot.

• Percentage of segment concurrent motion: This en-
compasses only the segment of the arm trajectory that
have the predictable and legible components. This met-
ric is calculated by dividing the total task time by the
concurrent motion.

Most of the subjective measures are based on Dragan et
al.’s [13] subset of questions from Hoffman’s metrics for
fluency in human-robot collaborations [14]. Table I shows the
subjective scales that were used. Each of these with exception
of the Post-Study question were rated on a 7-point Likert
scale.

VI. RESULTS

A statistical model based on the 2 x 2 within-subjects
design with motion type (MT) and intent recognition (IR)
as factors was used in the analyses of variance (ANOVA).
Post-hoc comparisons were conducted using Tukey HSD
test. Data where the intent recognition system failed was
excluded. Failure of the intent recognition system is defined
as requiring the participant to reach more than twice to detect
the hand motion.

We focus our analysis on the time period from the



Fluency
1. The human-robot team worked fluently together.
2. The robot contributed to the fluency of the team interaction.
Robot Contribution
1. I had to carry the weight to make the human-robot team better.
2. The robot contributed equally to the team performance.
Capability
1. I am confident in the robot’s ability to help me.
2. The robot is intelligent.
Legibility
1. The robot can reason about how to make it easier for me to
predict which bin it is reaching for.
2. It was easy to predict the bin that the robot was reaching for.
3. The robot moved in a manner that made its intention clear.
4. The robot was trying to move in a way that helped me figure
out which bin it was reaching for.
Intent Recognition
1. The robot can reason about what object I am reaching for
2. I am confident that the robot can infer my intentions.
The robot moved in a manner that made it clear it understood my
intent.
Post-Study
1. Out of all the robot teammate programs, was there one that
performed significantly better?
2. If yes, please describe the program including how it performed
significantly better.

TABLE I
SUBJECTIVE MEASURES USED IN THE USER STUDY.

start of the task to the moment where the human starts
pouring the cup. For the measures of human’s initial in-
tent recognition time, human’s final intent recognition time,
percentage of overall concurrent motion, and percentage of
segment concurrent motion, two coders coded the video
data. A high degree of reliability was found between
them. The average measure Intra-Class Correlation (ICC)
was 1 with a 95% confidence interval from 0.999 to 1
(F(191,192) = 4433,p < 0.001).

A. H1 - Objective Measures of Collaboration

Our analysis showed a marginally significant main effect
of MT on the human’s initial intent recognition time (MT:
F(1,17) = 3.183, p < 0.09). For the human’s final intent
recognition time, there were no significant results. For the
percentage of overall concurrent motion, the interaction was
significant as shown in Figure 5 (MT by IR: F(1,17) =
9.74, p < 0.01). The effects of MT differs as a function of
IR. The Legible Motion and IR Absent condition resulted in
the most concurrent motion as compared to the Predictable
and IR Absent condition. The interaction was marginally
significant for the percentage of segment concurrent motion
(MT by IR: F(1,17) = 3.58, p = 0.07); however, the post-
hoc test did not yield any significant results.

B. H2 - Perceptions of Collaboration

The scales shown in Table I were combined and an-
alyzed with ANOVAs and the results are in Figure 6.
Participants ratings of team fluency was influenced by MT
(MT: F(1,17) = 7.72, p < 0.05). Participants thought team
fluency was higher when the robot displayed legible motion.

For ratings of robot contribution, only the main effect of
MT was significant (F(1,17) = 6.44, p < 0.05). Similarly,

Fig. 5. The interaction effect between motion type and intent recognition
was significant. The Legible Motion and IR Absent condition resulted in
the most concurrent motion as compared to the Predictable and IR Absent
condition.

Fig. 6. The overall results of the subjective scales show that participants
gave higher ratings when the robot displayed legible motion.

Figure 6 shows that for ratings of robot capability, the
omnibus ANOVA indicated a significant main effect of
MT, F(1,17) = 12.36, p < 0.01. Participants perceived the
robot’s contribution and capability to be higher with legible
motion. As expected, MT significantly affected the legibility
rating, F(1,17) = 8.79p < 0.01. The omnibus ANOVA also
indicated a significant interaction between MT and IR,
F(1,17) = 4.59, p < 0.05.However, results from the post-
hoc analysis were not significant. Furthermore, the omnibus
ANOVA indicated a marginally significant main effect of IR
for the intent recognition rating, F(1,17) = 3.84, p = 0.06.

C. H3 - Subjective Performance Rating

Results from the post-study questionnaire showed that 14
out of 18 participants ( 78%) thought one of the four robot
programs performed significantly better. In terms of which
program performed significantly better, the voting results



are: 50% voted for legible motion and intent recognition,
28% for legible motion and no intent recognition, 14% for
predictable motion and intent recognition and 7% for the
baseline.

VII. DISCUSSION

In this work, we presented results from a user study
that investigated the effects of both intent recognition and
communication in a human-robot collaborative cup pouring
task. We showed that legible motion results in significant
improvements in most of the subjective human-robot team
performance measurements which supports hypothesis H1-1.
Legible motion positively influenced participants’ perception
of team fluency, robot contribution, robot capability, and
legibility, consistent with the results of prior work [13].

Qualitatively, we observed that rather than trying to finish
the task quickly, many participants attempted to time their
pouring action to happen concurrently with the robot’s, likely
as an attempt at collaboration. Thus, we analyzed the amount
of human-robot concurrent motion as a way to capture
any difference in the team’s ability to do this coordination
across conditions. For overall concurrent motion, we found
a significant interaction effect, with the baseline condition
having the least concurrent motion. That is, participants
received cues about the task later, and had to wait longer
before they could start moving to synchronize with the
robot. The most concurrent motion occurred with predictable
motion when IR was present, and legible motion when IR
was absent. That is, the most coordination occurred when the
robot started moving earlier and moved quickly to the goal,
or when the robot waited to move and moved indirectly to
the goal. This may be because in those conditions, the robot’s
behavior encouraged consistency in speed (or slowness), and
the participants attempted to join in that consistency. The
significant interaction effect for overall concurrent motion
suggests that intent recognition and communication should
be studied as an integrated system.

The use of intent recognition did not result in significant
improvements in the performance measurements. Partici-
pants did notice a difference in the two intent recognition
system as reported in the survey, where the majority thought
the condition with legible motion and intent recognition per-
formed significantly better, thus supporting H3. These results
suggest an integrated intent recognition and communication
system may promote more collaborative behavior among
team members.

In this work, we experimented with a simple collaborative
pouring task. A look at more complex tasks such as those
involving multi-tasking and time pressure may be interesting
to see if the same results would hold.

These results, especially the significance of the interaction
effects, highlight the importance of considering coordination
behaviors such as legible motion and intent recognition
in combination as well as independently. Additionally, the
results of our experiment show that people are drawn to
collaboration and synchronization, and that they may not
always be optimizing for speed in collaborative interactions.

A promising direction for future research is to study these
interactions between collaboration, timing, and robot motion.

VIII. CONCLUSION

This work is a first step towards exploring the effects of
integrated intent recognition and legible motion on human-
robot collaboration. Our initial findings suggest that a robot
that can both recognize and communicate intent is more
likely to increase collaboration in the team and thus enhance
the team performance. Legible motion also positively influ-
enced participants’ perception of the robot and team.
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