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Abstract The ability to detect a human’s contingent
response is an essential skill for a social robot attempt-
ing to engage new interaction partners or maintain on-
going turn-taking interactions. Prior work on contin-
gency detection focuses on single cues from isolated
channels, such as changes in gaze, motion, or sound. We
propose a framework that integrates multiple cues for
detecting contingency from multimodal sensor data in
human-robot interaction scenarios. We describe three
levels of integration and discuss our method for per-
forming sensor fusion at each of these levels. We per-
form a Wizard-of-Oz data collection experiment in a
turn-taking scenario in which our humanoid robot plays
the turn-taking imitation game “Simon says” with hu-
man partners. Using this data set, which includes mo-
tion and body pose cues from a depth and color im-
age and audio cues from a microphone, we evaluate our
contingency detection module with the proposed inte-
gration mechanisms and show gains in accuracy of our
multi-cue approach over single-cue contingency detec-
tion. We show the importance of selecting the appropri-
ate level of cue integration as well as the implications
of varying the referent event parameter.
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1 Introduction

A social robot can use contingency as a primary or aux-
iliary cue to decide how to act appropriately in vari-
ous interaction scenarios (e.g. [1,2]). One such scenario
is identifying willing interaction partners and subse-
quently initiating interactions with them, such as a shop
robot’s attempting to engage customers who might need
help. To do this, the robot would generate a signal in-
tended to elicit a behavioral response and then look
to see if any such response occurs. The presence of a
change in the behavior of a human at the right time is
a good indication that he or she is willing to follow-up
with an interaction. Similarly for disengagement, the
absence of contingent responses can verify that a hu-
man has finished interacting with the robot.

Another scenario is that which involves reciprocal
turn-taking situations. In such contexts, contingency
can be used as a signal that helps a robot determine
when the human is ready to take a turn and when it
is appropriate for the robot to relinquish the floor to
the human. For example, if the robot sends a signal
to yield the floor to the human and detects a contin-
gent response from the human mid-way through, this
may indicate the human’s readiness take a turn. In this
case, the robot can interrupt its signal and yield the
floor to the human.

When a robot understands the semantics of a hu-
man’s activity in a given context and has a specific
expectation over a set of known possible actions, then
checking for a contingent response might simply entail
matching the human’s executed action against the ex-
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pected action set. This strategy of detecting expected re-
actions makes the sometimes problematic assumptions
that the set of appropriate or meaningful responses can
be enumerated in advance, and that specific recogni-
tion methods can be constructed for each response. For
example, the robot might expect the human to utter a
sentence that is contained in the grammar of its speech
recognizer; a match would indicate a contingent re-
sponse. In these cases, preprogrammed domain-specific
responses may be sufficient to decide how to act. In
many realistic interaction scenarios, however, the po-
tential natural human responses are so varied that it
would be difficult to enumerate them a priori and to
preprogram methods of detecting those actions. In ad-
dition, knowing which action was generated is not al-
ways necessary; often, the presence of a contingent ac-
tion is enough to enable appropriate social behavior.
Thus, a robot needs an additional mechanism to detect
contingent responses that are not modeled in advance:
detecting a behavioral change that is indicative of a con-
tingent response. We believe that these two mechanisms
are complementary for contingency detection. Our main
focus in this work is to provide a framework that de-
tects behavior changes without a priori knowledge of
possible responses.

A contingent behavioral change by a human can oc-
cur in one or multiple communication channels. For ex-
ample, a robot that waves to a human to get his atten-
tion may receive the speech of “Hello!” with a simul-
taneous wave motion as a response. Here, we consider
the problem of human contingency detection with mul-
timodal sensor data as input when forming our compu-
tational model. We validate the multiple-cue approach
using multimodal data from a turn-taking scenario and
show that modeling a response using multiple cues and
merging them at the appropriate levels leads to im-
provements in accuracy in contingency detection. Col-
lectively with our previous work [3], the results in this
paper demonstrate that our behavior-change-based con-
tingency detector provides a highly indicative percep-
tual signal for response detection in both engagement
and turn-taking scenarios.

In this paper, we make the following contributions.

1. We present a contingency detection framework that
integrates multiple cues, each of which models dif-
ferent aspects of a human’s behavior. We extend our
prior work, which only uses the visual cues of motion
and body pose, to create a more generic contingency
detection module. In our proposed framework, the
cue response can be modeled as either an event or
a change.

2. We propose three different levels of cue integration:
the frame level, the module level, and the decision

Fig. 1 A human being contingent to the robot in a turn-
taking scenario based on the game “Simon says.” The robot
sends both motion and speech signals to the human subject
by simultaneously waving and saying hello. The subject waves
back to the robot in response.

level. We show that for change-based detection, in-
tegration of visual cues at the module level outper-
forms integration at the decision level.

3. We examine the effects of selecting different timing
models and referent events. In particular we show
how selecting the minimum necessary information
referent event [4] improves detection and requires a
smaller amount of data, increasing the tractability
of the real-time detection problem.

4. We provide a probabilistic method for measuring
the reliability of visual cues and adaptively integrat-
ing those cues based on their reliability.

5. We evaluate our proposed contingency detection frame-
work using multimodal data and demonstrate that
multi-cue contingency detection is a necessary com-
ponent for interactions with humans and their multi-
modal responses.

The rest of paper is organized as follows. Section 2
shows prior research related to contingency detection.
Section 3 describes our computational model for con-
tingency detection and cue integration. Section 4 intro-
duces two different approaches for response detection:
event-based detection and change-based detection. Sec-
tion 5 describes the derivation of motion, body pose,
and audio cues from image and depth sensors and the
implementation of contingency detectors using these
cues. Section 6 explains the different levels of cue inte-
gration in detail. Sections 7–10 explain human data col-
lection, model evaluation with the collected data, and
experimental results. Finally, Section 11 presents our
conclusions.

2 Related Work

Prior work has shown how contingency detection can be
leveraged by a social robot to learn about structure in
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functional or social environments. Contingency detec-
tion has been used to allow robots to learn human gaze
behaviors [5–7] and to understand social interactions [1,
2,8].

Butko and Movellan [7] broke down the problem of
contingency detection into two subproblems: response
detection and timing interpretation. They developed a
model of behavior that queried the environment with
an auditory signal and detected a responsive agent us-
ing a thresholded sound sensor. The goal of the con-
troller was to query at times that maximized the infor-
mation gained about the responsiveness of the agent.
Thus, their focus was on the timing constraints of the
contingency problem. Similarly, Gold and Scassellati [9]
focused on learning effective timing windows for con-
tingency detection, which they did separately for an
auditory signal and a visual signal.

There is evidence that humans use this contingency
mechanism to learn some causal relationships. Watson
found that infants use this mechanism for self-recognition
and for detection of responsive social agents [10,11]. A
robot can also use contingency for recognition of self
and others [12,13]. In this formulation of the problem,
the presence of a visual change is directly mapped to
the presence of a response. Thus, the presence of the
response is assumed, but the source of the response is
unknown and is attributed using timing interpretation.

In our work, we formulate the problem slightly dif-
ferently. Because we are interested in human-robot in-
teraction domains, such as engagement detection and
turn-taking, we focus on a single response source: the
human. We also cannot assume that visual changes al-
ways indicate responses, as visual changes frequently
occur without correlating with contingent responses.
Detecting contingency thus requires more complex anal-
ysis of what visual changes are observed. Previously in
[3], we implemented contingency detection using sin-
gle vision-based cues and demonstrated the application
of our contingency detection module as a perceptual
component for engagement detection. Other work has
focused on processing other individual channels, inde-
pendently demonstrating the significance of gaze shift
[14,15], agent trajectory [16,17], or audio cues [18] as
contingent reactions.

An ideal contingency detector should be able to ac-
cept a variety of sensory cues, because certain percep-
tual and social cues are more informative for some in-
teractional situations than for others. Here we extend
the modalities supported by our framework in [3] to in-
clude the audio channel and detail an approach for the
integration of multiple cues.

Time
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Time

tRef

WAWB

Robot Signal

Human Response

tS

tC

Maximum Response Delay 
(MRD)

ΔB ΔA

Fig. 2 Causal relationship between a robot’s interactive sig-
nal and a human’s response. Top: tS is the start of the robot
signal, and tR is the start of the human response. Bottom:
Two time windows, WB and WA, defined with respect to
the current time tC , are used to model the human behavior
before and after tRef . WB and WA are of size ∆B and ∆A

respectively. The time window starting at tRef and valid over
MRD is examined for the contingent human response. Note
that tRef may not be same as tS .

3 Approach

Contingency detection consists of two sub-problems: re-
sponse detection and timing estimation. Figure 2 shows
the causal relationship between a robot signal and the
corresponding human response as well as time windows
for detecting such a response. A robot generates some
interactive signal to a human by gesturing to, speaking
to, or approaching her. Some time after the robot ini-
tiates a signal and indeed sometimes before the robot
completes its action, the human may initiate a response
that could last for a certain duration.

The time interval during which a human may re-
spond to a given robot signal needs to be estimated. We
define its endpoints to be the time at which the robot
begins to look for a human response, tRef , and the max-
imum time for the human’s response delay after tRef ,
(tRef +MRD). To detect a response, we evaluate sen-
sor data within that time window. Because we are not
considering anticipation on the part of the human, tRef
is defined to be after tS ; to be effective it also should
precede the initiation time of the human’s response, tR.
Chao et al. [4] define the notion of the minimum neces-
sary information(MNI) moment in time when an actor
- human or robot - has conveyed sufficient information
such that the other actor may respond appropriately.
We will describe this concept in more detail within the
context of our experiments in Section 7.) and in the re-
sults we will show the MNI is a more effective referent
than the time at which the robot completes its signal.

To detect human responses within the estimated
evaluation time window, we take two different modeling
approaches: event detection and change detection. As
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Fig. 3 Situation-independent Contingency Detection. Situ-
ation specific information, such as robot signals and timing
models are parameters of the contingency module.

shown in Figure 2, we define WB and WA as time win-
dows from which data are used to model the human be-
havior before and after the robot’s referent signal, tRef ,
respectively. An event detection models a response as
an event and that event is looked for in WA. On the
other hand, a change detection models a response as a
change, which is measured by comparing observations
between WB and WA. When the human does not re-
spond to the robot, both WB and WA describe the same
aspect of the human’s behavior. However, in the con-
tingent cases the human changes her behavior to make
a contingent response, thus WB and WA model differ-
ent behaviors. To detect such changes, we measure how
likely that sensor data in WA reflects the same behavior
observed in the sensor data in WB .

Figure 3 shows information flow between a contin-
gency module and other robot modules. To make our
contingency detection module as situation-independent
as possible, we assume that the expected timing of a
response is determined by another of the robot’s mod-
ules and is taken as a parameter to the contingency
detection module.

3.1 Cue Representation

To model a given aspect of human behavior, we derive
information from observations from a single or multiple
sensors, hereafter referred to as a cue. Depending on the
characteristics of the sensors used, a cue is encoded as
either a binary variable or a continuous variable. When
underlying sensors produce low-dimensional observa-
tions, the derived cue is easily represented as a binary
variable. For example, audio and touch sensor signals
can be classified as either on or off by simply threshold-
ing the magnitude of the raw observations. Sensors that
generate high-dimensional observations, such as image
and depth sensors, require more complicated prepro-

cessing, and thus a derived cue would be encoded as
continuous and high-dimensional variables. Section 5
describes procedures for extracting cues from sensors
in detail.

3.2 Multi-cue Integration

The extracted cues from sensors should be integrated
in such a way that the contingency detection mod-
ule reduces uncertainty and increases accuracy in its
decision-making. We adapt the data fusion framework
introduced by Hall and Llinas [19] to integrate cues.
Here, we define a frame as a representation of cue in-
formation and as an input to the contingency detection
module. We define three levels of integration: 1) the
frame level, at which cues are merged into one aug-
mented frame as an input to the contingency module;
2) the module level, at which cues are integrated within
one contingency detection module; and 3) the decision
level, at which outputs from multiple single-cue contin-
gency modules merge. These levels are shown in Figure
4.

Intuitively, the principal difference between frame
and module level integration and, decision level inte-
gration is whether the cues are combined into a single
signal whose variation during the contingency window
is evaluated for a behavioral change, or whether each
cue is considered independently and the two decisions
are fused to provide a final answer.

Cues should be integrated at the right level based
on characteristics of a cue, the underlying sensor’s sam-
pling rate and dimensionality, and encoded perceptual
information. If two cues are encoding the same percep-
tual modality of a human and they complement each
other, thus modeling behavior in a more discriminative
way, then two cues should be merged either at the frame
or at the module level rather than at the decision level.

The difference between frame level integration and
module level integration is whether the cues are aug-
mented and evaluated by one common distance met-
ric, or whether each individual cue is evaluated by a
cue-specific distance metric and the two evaluations are
fused. One evaluation on merged cues captures corre-
lation between cue observations better than merging
multiple individual evaluations. If such a distance met-
ric is available, cues should be integrated at the frame
level rather than at the module level. Because of the
dissimilarity of the physical measurements we do not
explore frame level integration in this paper.



Multi-Cue Contingency Detection 5

Cue
Extracting data 
from Windows

Dissimilarity 
Measure

Building 
Distance Matrix

Building 
Distance Graph

Cue Buffer Dissimilarity
score

Cue
Cue
Cue
Cuet

Fig. 5 Change Detection Framework [3]
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Fig. 4 Cue integration at different levels: a) at the frame
level, b) at the module level, and c) at the decision level.

4 Response Detection

4.1 Event Detection

When the possible forms of expected responses are known
to a robot a priori, responses can be modeled and be rec-
ognized as events. If temporal events are modeled with a
high-dimensional cue, some vision-based methods such
as generative models (Hidden Markov Models and their
variants) and discriminative models (Conditional Ran-
dom Fields and their variants) can be adopted [20]. Sim-
ple events such as touching a robot or making a sound
can be modeled using low-dimensional cues, so they are
easier to detect using simple filtering methods. To de-
tect vocal responses, we derive the audio cue from a
microphone sensor and model them as events.

4.2 Change Detection

Change detection measures a human’s behavioral change
as a response to a robot’s signal. We look for a signifi-
cant perturbation in the human behavior by modeling
that behavior before and after the signal and looking

for significant differences. We assume that any observed
perturbation happening within the allowed time inter-
val is the human’s response. A change is measured using
a history of cue data between WB and WA as input. To
measure the degree of behavioral difference in the re-
sponse, we proposed a change detection framework [3],
as shown in Figure 5.

As the change detector accumulates cue data into a
buffer over time, it keeps only enough to fill the past
∆B amount of time and discards frames that are older.
When triggered at time tRef , the data for WB stays
fixed, and the detector transitions to accumulating cue
data to fill WA until time tRef+∆A.

Once cue data exist over all of WB and WA, a cue
distance matrix is calculated between data in WB and
WA using a cue-specific distance metric (Section 4.2.1).
The distance matrix is converted into a distance graph
by applying specific node connectivity (Section 4.2.2).
Then, we calculate the dissimilarity score by measuring
a statistical difference between the graph nodes repre-
senting data from WB and WA (Section 4.2.3). Finally,
as an extension to [3] and as one of the contributions of
this paper, we introduce a method that uses probabilis-
tic models to evaluate a dissimilarity score S within
our multi-cue contingency detection framework (Sec-
tion 4.2.4).

4.2.1 Building the Distance Matrix

We define a cue buffer to be the set of cue feature vec-
tors vt computed at each instant of time. From the cue
buffer, we first extract cue data from two time windows
WB and WA based on tRef and tC . WB is the time
interval between tRef - ∆B and tRef , and WA is the
time interval between tC - ∆A and tC . Let V B and V A

denote cue data extracted from the time windows WB

and WA respectively:
V B = {vt | t ∈WB} = {vl+1, vl+2, ..., vl+P }
V A = {vt | t ∈WA} = {vm+1, vm+2, ..., vm+Q}.
Let V = V B ∪ V A, so |V | = (P +Q). Let Vi denote

the ith element of V. The distance matrix DMX of a
cue X is calculated by measuring the pairwise distance
between cue elements in V ; DMX(i, j) describes the
distance between cue vectors Vi and Vj using a prede-
fined distance metric for the cue X. We will describe
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Fig. 6 Building a distance graph from the distance matrix.
The edge weight between Vi and Vj , w(Vi, Vj), is the distance
between Vi and Vj , DMX(i, j). N(Vi, k) is the kth nearest
neighbor of Vi in WB . Blue and red nodes are from V B and
V A, respectively.

distance metrics for visual cues, motion (see Section
5.2), and body pose (See Section 5.3).

4.2.2 Building the Distance Graph

We construct a distance graph from the distance ma-
trix. The distance graph has the following characteris-
tics as shown in Figure 6:

1. Nodes from WB (e.g. V1 to V4) are fully connected
to each other.

2. Nodes from WA (e.g. V5 and V6) are never connected
to each other.

3. Nodes from WA are only connected to the κ nearest
nodes from WB .

The edge weight between two nodes Vi and Vj , w(Vi, Vj),
corresponds to DMX(i, j).

4.2.3 Calculating the Dissimilarity Measure

We measure dissimilarity by calculating the ratio of
the cross-dissimilarity between V B and V A to the self-
dissimilarity of V B . N(Vi, k) denotes the kth nearest
neighbor of Vi in VB . Let E denote the number of
dissimilarity evaluations. CD(V ) measures the cross-
dissimilarity between V B and V A in the following equa-
tion:

CD(V )

=
Q∑
q=1

κ∑
k=1

E∑
e=1

w(VP+q, N(N(VP+q, k), e)),
(1)

where P is |V B | and Q is |V A|.

SD(V ) measures the self-dissimilarity within MB
T :

SD(V )

=
Q∑
q=1

κ∑
k=1

E∑
e=1

w(N(VP+q, k), N(N(VP+q, k), e))
(2)

The dissimilarity of V, DS(V ), is defined as:

DS(V ) =
CD(V )
SD(V )

(3)

DS(V ) is the dissimilarity score S for a given V .

4.2.4 Evaluating Dissimilarity Score

In [3], we learned a threshold value on the dissimilarity
score from the training data and used that to classify
the score as being contingent or not. This simple evalu-
ation method cannot be used in our probabilistic model
for multi-cue integration because it does not have the
confidence on the decision made, and because it does
not take into account how informative a used cue is.

We propose a new evaluation method that resolves
the two problems described above. To determine that
an observed change (i.e. a dissimilarity score) actually
resulted from a human response and not from changes
that occur naturally in the human’s background be-
havior, we should evaluate the change not only un-
der the contingency condition, but also under the non-
contingency condition. To this end, we model two condi-
tional probability distributions: a probability distribu-
tion of the dissimilarity score S under the contingency
condition C, P (S|C), and a probability distribution of
S under the non-contingency condition, P (S|C). As-
suming that a human changes her behavior when re-
sponding, these two distributions need to differ for the
cue to be considered informative.

We learn the distribution P (S|C) off-line from train-
ing data in which human subjects are being contin-
gent to the robot’s action. We estimate the distribu-
tion P (S|C), the null hypothesis, on the fly during an
interaction from observations of the human’s behavior
before the robot triggers a signal. It is important to note
that a null hypothesis is estimated with on-line data,
particularly the data gathered immediately before the
robot’s signal is triggered. As shown in Figure 7, this
distribution is estimated from dissimilarity score sam-
ples, each of which is obtained as if the robot’s signal
were triggered and enough data were accumulated at
each point in time.
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Fig. 7 A method for building null hypothesis. Dissimilarity
score samples are obtained by evaluating data in windows
over time.

5 Cues for Contingency Detection

The choice of cues for response detection should be de-
termined by the nature of the interaction. When a robot
engages in face-to-face interaction with a human, a shift
in the human’s eye gaze is often enough to determine
the presence of a response [14,15]. In situations where a
gaze cue is less indicative or is less reliable to perceive,
other cues should be leveraged for response detection.
Here, we are interested in modeling human behavior
using three different cues: 1) a motion cue, the pattern
of observed motion; 2) a body pose cue, the observed
human body configuration; and 3) an audio cue, the
presence of human sound.

5.1 Audio Cue

For the audio cue, the contingent response is modeled
as an event that occurs during the evaluation time win-
dow WA (from tRef to tRef+MRD). The audio cue
models the presence of the human response through the
sound channel and is derived from a microphone sen-
sor. We build a simple event detector using the audio
cue. The audio cue is estimated as a binary variable by
thresholding on raw sound data to remove a base level
of background noise, as shown in Figure 8(a). Only raw
sound samples greater than a certain threshold are set
to 1; otherwise, they are set to 0. At time t, this bi-
nary audio cue, denoted as At is added to the audio
cue buffer. After a robot triggers a signal, the evalua-
tion starts. During the evaluation, at time tc, cue data
AT is first extracted from WA: AT = {At | t ∈WA}.
AT is classified as Aon only if all elements in AT are
1; otherwise it is classified as Aoff . The classification
ratio of Aon, R(Aon), is calculated as:

R(Aon) =
P (C|Aon)
P (C|Aon)

=
P (Aon|C)P (C)
P (Aon|C)P (C)

(4)

Since the presence of a human response can only be
considered when the audio cues are onset, the classifi-
cation ratio of Aoff is set to 1 and thus does not have
any influence on the overall contingency decision when
it is integrated with other cues.

5.2 Motion Cue

The motion cue models the motion patterns of the hu-
man of interest in the image coordinate system. This
cue is derived from observations from image and depth
sensors. To observe only motions generated by a human
subject in a scene, we segment the region in which a hu-
man subject appears. To do so, we use the OpenNI API
[21], which provides the functionalities of detecting and
tracking multiple humans using depth images. The pro-
cess for generating the motion cue is illustrated in 8(b).
First, the motion in an image is estimated using a dense
optical flow calculation [22]. After grouping motion re-
gions using a connected components-based blob detec-
tion method, groups with small motions and groups
that do not coincide with the location of the human
of interest are filtered out. The motion cue comprises
the remaining motion regions. This extracted motion
cue is used as an input into the motion contingency
module and is accumulated over time.

In the evaluation of [3], we included an intermedi-
ate step of dimensionality reduction using Non-negative
Matrix Factorization (NMF) [23] on the combined cue
data. The NMF coefficients of the data are normalized,
so the magnitude of the original motion is encoded in
NMF basis vectors. We calculate Euclidean distances
between the cue data using only NMF coefficients of
the data. When the human does not move, small mo-
tions that occur from noise observations can stand out
and determine a dissimilarity score. If some noise occurs
in MA

T , then a high dissimilarity score would be pro-
duced. To remove this instability, we now reconstruct
them using NMF basis vectors to recover the original
magnitude of motion and calculate Euclidean distances
between the reconstructed cue data. The small value
εM is added to the distance matrix of MB

T to increase
the overall self-dissimilarity of MB

T .

5.3 Body Pose Cue

The body pose cue models the body configuration of
the human of interest. The human body configuration
is estimated from a 3D point cloud extracted from the
human of interest. The process for generating the body
pose cue is illustrated in 8(c). As for the motion cue,
we segment the region of the human from a depth scene
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Fig. 8 Extracting cues from different sensors: a) audio cue, b) motion cue, and c) body pose cue.

using the OpenNI API. Then, we extract a set of 3D
points by sparse sampling from the human region in a
depth image and reconstructing 3D points from those
depth samples.

As a distance metric for the body pose cue, we
measure the pairwise distance between two sets of 3D
points. Let P1 and P2 be two sets of 3D points: P1 ={
X1
i | i = 1, . . . ,m

}
and P2 =

{
X2
j | j = 1, . . . , n

}
. The

distance between these point sets P1 and P2, PD(P1, P2),
is defined as follows:

PD(P1, P2) =
1
mK

m∑
i=1

K∑
k=1

∥∥X1
i −X2

ik

∥∥
2

+
1
nK

n∑
j=1

K∑
k=1

∥∥X2
j −X1

jk

∥∥
2
,

(5)

where X2
ik is the kth nearest neighbor in P2 to X1

i and
X1
jk the kth nearest neighbor in P1 to X2

j . When calcu-
lating the distance matrix DMD of MB

T and MA
T , the

small value εD is added to the distance matrix of MB
T

for the same reason of handling noise effects as for the
motion cue.

6 Multiple Cue Integration and Adaptation

Cues can be integrated at one of three levels: the frame
level, the module level, or the decision level. The spe-
cific level should be chosen based on characteristics of
the cues, such as dimensionality, sampling rates, and
associated semantics.

Since the motion and body pose cues are extracted
at similar sampling rates from image and depth sen-
sors and also model the same perceptual region, we can

combine the motion and configuration aspects to yield
a feature that is more discriminative than either sep-
arately. Because a common distance metric for these
cues is not available, we merge these cues at the mod-
ule level, at which distance matrices calculated from
individual cues are merged. Due to the different sam-
pling rate and low-dimensional signal, the audio cue is
integrated at the decision level with the output of the
merged motion and body pose cues. For the decision
level of integration, we use a näıve Bayes probabilistic
model. Our implementation of the proposed framework
for contingency detection with the motion, body pose,
and audio cues is shown in Figure 9.

6.1 Cue Integration at the Decision Level

At the decision level of integration, we use the näıve
Bayes probabilistic model to integrate dissimilarity scores
obtained from cues. We chose this model because cues
that are integrated at this level are assumed to be con-
ditionally independent of each given the contingency
value; otherwise, they should be integrated at other
levels. Assume that some function fX is provided that
summarizes the current and past cue observations into
a dissimilarity score. For two cues Cuei and Cuej that
are integrated at the decision level, the overall contin-
gency C in terms of Si = fi(Cuei) and Sj = fj(Cuej)
is estimated by standard Bayesian mechanics, as de-
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Fig. 9 An implementation of the proposed contingency framework with the motion, body pose, and audio cue.

scribed in Equation 8:

P (C|Si, Sj) =
P (Si, Sj |C)P (C)

P (Si, Sj)

=
P (Si|C)P (Sj |C)P (C)

P (Si, Sj)

(6)

P (C|Si, Sj) =
P (Si, Sj |C)P (C)

P (Si, Sj)

=
P (Si|C)P (Sj |C)P (C)

P (Si, Sj)

(7)

P (C|Si, Sj)
P (C|Si, Sj)

=
P (Si|C)
P (Si|C)

P (Sj |C)
P (Sj |C)

P (C)
P (C)

(8)

If this ratio > 1, we declare that the human behavior
is changed; otherwise, any changes are not detected.

6.2 Integrating Motion and Body Pose Cues at the
Module Level

At the module level of integration, the cue data are
integrated when calculating a distance matrix. From
the accumulated cue data for both motion and body
pose cues, two distance matrices are calculated indepen-
dently and merged into a new distance matrix. Since the
motion and body pose cues are represented in different
coordinate spaces, an image space for motion and a 3D
world space for body pose, the distance matrices need
to be normalized. We denote the distance matrices for
motion and body pose cues as DMM and DMD, respec-
tively. The merged distance matrix DMN is calculated
in the following way:

DMN =
1
2

(
DMM

‖DMM‖F
+

DMD

‖DMD‖F
), (9)

where ‖DMX‖F is the Frobenius norm of a matrix
DMX . After building DMN , we use this distance ma-
trix to calculate the dissimilarity measure, as explained
in Section 4.2.3.

6.3 Audio Cue Integration

Because of the low dimensionality and fast sampling
rates of the audio cue, the audio is naturally integrated
with other cues at the decision level. We model the
specific event of sound being on for some amount of
time. In contrast to the motion and body pose cues,
probabilistic distributions of this event for the näıve
Bayes model are learned off-line from the training data.

7 Data Collection

Two important scenarios in HRI where contingency de-
tection is applicable are engagement detection and turn-
taking. In previous work, we demonstrated our contin-
gency detection module with single cues in an engage-
ment detection scenario using Simon, our upper-torso
humanoid robot [3]. In that experiment, the robot at-
tempted to get a human subject’s attention while the
human was performing a background task, such as play-
ing with toys or talking on a cell phone.

In this paper, we validate multiple-cue contingency
detection within a turn-taking scenario in which the
robot plays an imitation game with a human partner.
Importantly, this imitation game was designed not for
evaluation of a contingency detector but for generating
natural interactions with human-like timings. To col-
lect naturalistic data, the robot was tele-operated over
the whole interaction by one of authors with randomly
generated timing variations. In this section, we describe
how we conducted data collection for this turn-taking
scenario.

This imitation game was based on the traditional
children’s game “Simon says,” and is described exten-
sively in [4]. The interaction setup is shown in Figure
1. In this game, one participant plays the leader and
the other plays the follower. The leader is referred to
as “Simon.” There are two phases in the interaction, a
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Fig. 10 An example of an interaction between a human and a robot.

(a) “Wave” (b) “Bow” (c) “Shrug”

(d) “Fly like a bird” (e) “Play air guitar”

Fig. 11 Actions in the “Simon says” game.

game phase and a negotiation phase. An example of an
interaction is shown in Figure 10.

During the game phase, the leader says sentences
of the structure, “Simon says, [perform an action]” or
simply “[Perform an action].” The five motions under-
standable to the robot were waving, bowing, shrugging,
flying like a bird, and playing air guitar. These mo-
tions are shown in Figure 11. The follower must imitate
the leader’s action when the leader starts with “Simon
says,” but when the leader does not, the follower must
refrain from performing the action. If the follower mis-
takenly performs the action when the leader does not
start with “Simon says,” the follower loses the game.
The leader concludes a game phase segment after ob-
serving an incorrect response by declaring, “You lose!”
or “I win!”

In the negotiation phase, the leader and the follower
negotiate about switching roles. The follower can ask,
“Can I play Simon?” or state, “I want to play Simon.”
The leader can acquiesce to or reject the follower’s re-
quest. The leader also has the option of asking the fol-
lower, “Do you want to play Simon?” or saying to him,
“You can play Simon now.” Similarly, the follower can
acquiesce to or reject the leader’s request. The leader
and follower can exchange roles at any time during the
interaction.

We collected multimodal data from 11 human sub-
jects. There were about 4 minutes of data per subject.
The sensors recorded were one of the robot’s eye cam-
eras, an external camera mounted on a tripod, a struc-
tured light depth sensor (“Kinect”) mounted on a tri-
pod, and a microphone worn around the participant’s
neck. We also logged the robot’s signals with times-
tamps, so that we could link the time of the robot’s
signal with the sensor data. The robot’s eye camera
and the external camera were intended to extract a hu-
man subject’s face information, which we did not use in
this paper. We used only depth and camera data from
Kinect sensor and microphone sensor data.

8 Model Building and Evaluation

To build and evaluate a computational model of contin-
gency detection for the “Simon says” interaction game,
we use a supervised learning approach. We employ a
leave-one-subject-out cross validation procedure; a sin-
gle subject is iteratively left out of training data and is
used as testing data.

First we split the recorded data sessions into shorter
video segments, each of which starts at the tRef of one
robot signal and ends at the tRef of the following one.
We examine two different points of time as a referent
event, tRef . One referent point is tS , the time at which
the robot signal starts, and the other is the point of min-
imum necessary information (MNI), the time at which
the robot has finished conveying enough information for
a human to give a semantically appropriate response.

The time location of the MNI was coded from video
by two authors. In the game phase, the human needs to
know whether or not to respond and also which motion
to respond with if she needs to respond, so the MNI
is the point at which both pieces of information have
been delivered. In the negotiation phase, since the main
channel for delivering information is speech, the infor-
mation is sent by a pronoun. Some examples of coding
robot MNI in the game phase and the negotiation phase
are shown in Figure 12 and Figure 13, respectively. The
coder agreement was 99.8% for robot MNI events.
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(a) All informative speech occurs before the ani-
mation starts.

(b) The action is conveyed through motion be-
fore the human knows whether or not to exe-
cute it.

Fig. 12 Examples of coding robot MNI in the game phase.

(a) Pronouns demarcate information for turn ex-
change.

(b) The emotive phrase announces the end of a
set.

(c) Examples of acknowledgments.

Fig. 13 Examples of coding robot MNI in the negotiation
phase.

Depending on the presence or absence of a human’s
response, video segments were partitioned into two sets,
contingent and non-contingent. In both phases, if the
human makes noticeable body movements or vocal ut-
terances as a response to a robot’s signal, then corre-
sponding video segments are classified as being contin-
gent. Therefore, the contingent set included responses
that were not covered by the game semantics that oc-
curred when the robot did not say “Simon says.” All
video segments were coded independently by two of the
authors, and for each video segment that was agreed
upon, the coded time was averaged. The coder agree-
ment was 100% for classification. (The average differ-
ence in coded time was 123 milliseconds.) We collected
246 video segments: 101 (97 contingent) cases from ne-
gotiation phases and 163 (120 contingent) cases from
game phases.

8.1 Model Training

To train a computational model for contingency detec-
tion, we set or learn values for system parameters: time
windows (WB , WA, and MRD) and conditional prob-
ability distributions for cues.

For the visual cues, we set the time window WB

and WA to 4 seconds and 2 seconds, respectively. We

chose these values because in the data, human responses
usually last less than two seconds, and from our em-
pirical observations, WB should be at least two times
longer than WA to make a reliable dissimilarity evalua-
tion. We learned the model of P (S|C) from dissimilar-
ity scores, which were obtained by processing contin-
gent video segments from the game phase interactions
in the training data set. Instead of manually collecting
dissimilarity scores in which a response occurred, we
extract one second of dissimilarity scores around the
maximum.

A probabilistic model of P (S|C), the null hypoth-
esis is not learned from the training set since the null
hypothesis should represent the amount of behavioral
change that occurs naturally during interaction — not
indicative of a contingent response. Therefore, it is learned
on the fly by evaluating a human’s normal behavior be-
fore the referent event. In building a null hypothesis,
our proposed method requires both WB+WA and an
extra α, used to generate dissimilarity samples. We set
α to 2 seconds. Overall, the method requires 8 seconds
of data.

For the audio cue, modeled as an event, we set the
time window WA for the audio cue to 200 ms. This is
based upon our observation about how long the vocal
responses take in our data set. We learn conditional
models of P (Aon|C) and P (Aon|C) and a prior model
of P (C). These models are learned from both negotia-
tion phase and game phase interactions in the training
data set. P (Aon|C) is simply calculated as the ratio of
the total amount of time where audio events are found
to be onset to the total amount of time for contingent
interactions. We learned P (Aon|C) in a similar man-
ner using only non-contingent interactions. We set the
prior model of P (C) to 0.5 to eliminate classification
bias towards contingency due to our unbalanced train-
ing data.

Depending on the choice of referent event, tRef , we
use different evaluation windows MRD. When tS is
used as the referent event, the evaluation terminates af-
ter the following interaction begins or after it lasts for
8 seconds, whichever comes first. When MNI is used,
MRD is set to 4 seconds, during which most of the
responses happened in our “Simon says” game data.

8.2 Experimental Setup

Our experiments test the effects of cue integration and
referent event selection on the overall performance of
contingency detection in our experimental scenario. We
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Fig. 14 Effects of referent event selection on accuracy of
cues.

test 9 different cue combinations1 and two types of ref-
erent events. One referent event is the time when the
robot starts sending a signal, tS . The other is the point
of MNI in the robot signal.

To test effects of referent event selection, we build
two different classifiers: TS (tS as the referent event)
and MNI (MNI as the referent event).

9 Results

9.1 Effects of Referent Event

As shown in Figure 14, the detectors with MNI as their
referent event found visual responses in game phases
and vocal responses in negotiation phases better than
those with tS . This reflects the fact that the closer the
data for building a null hypothesis is to the referent
event, the better the classification accuracy. When we
extract data to model a human’s background behavior,
we want this data to be as new as possible and not
to include any contingent responses. We find that the
point of time when MNI happens meets these criteria
for a good referent event.

The speed of exchanges in turn-taking interactions
may not always permit the delay needed for building
the null hypothesis. This problem occurred frequently
in our collected data because the teleoperator focused
on generating natural interactions with human-like tim-

1 M (Motion only), B (Body Pose only), A (Audio only),
M&B (Motion and Body Pose merged at module level), M/B
(Motion and Body Pose merged at decision level), M/A (Mo-
tion and Audio at decision level), B/A (Body Pose and Audio
at decision level), M/B/A (all Motion, Body Pose, and Audio
at decision level), M&B/A (Motion and Body Pose at module
and Audio at decision level)

ings rather than generating data for a contingency de-
tector. Thus, many interaction segments do not contain
enough data to model the human’s baseline behavior.
Using MNI as a referent event provides the detector a
much tighter evaluation window than using the start
time of the signal generated. We measured what per-
centage of data that is used for building null hypothesis
comes from previous interactions. From our coded inter-
actions, we observed that 67% of data (5.37 seconds) is
from previous interactions in TS based detectors, 51%
of data (4.15 seconds) in MNI based detectors.

In cases where the robot knows the MNI (i.e. from
the gesture or speech that is being delivered), it is the
best point in time to use as the referent. By using MNI,
the robot knows when to stop evaluation. But in cases
where this is not known, then the beginning of robot
signal can serve as the fallback referent. The MNI is
critical to making our contingency detectors operate in
natural interactions in which the robot interacts with
humans with human-like timings. This is necessary for
realtime detection in realistic and natural interaction
scenarios.

9.2 Cue Integration

We run experiments to test how indicative single or
combined cues are for detecting the presence of re-
sponses. For the purpose of clarification, we explain our
observations only with MNI-based classifiers. It should
note that the same observations are valid with TS-based
classifiers.

During negotiation phases, as shown in Figure 15(a),
classifiers using audio cues detect speech-based responses
with an accuracy of 0.96. The error of 0.04 is all false
negatives and comes from interactions in which two
robot actions occur in close sequence without delay.
Thus, human subjects consider the two actions as one
and wait to respond until the second action ends. Clas-
sifiers that do not use the audio cue perform under
the average accuracy of 0.50. When the visual cues are
merged together with the audio cue, the overall accu-
racy is slightly increased. This increase in accuracy re-
sults from more interaction data classified as being con-
tingent; in some negotiation interaction cases, humans
made visible responses by waving back to a robot with-
out making vocal responses.

On the other hand, during game phases, the visual
cues such as the motion, body pose, and the merged
ones are more indicative of responses than the audio
cue, as shown in Figure 15(b). Due to the nature of
the game phase interactions, where a robot asks human
subjects to imitate its motion commands, the most fre-
quently detectable form of response is a visual change.
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(c) Accuracy on both the negotiation and game phases.

Fig. 15 Accuracy of the MNI based classifiers on both the
negotiation and game phases. (MNI for their referent event)
X&Y indicates cue X and cue Y combined at the module
level; X/Y indicates integration at the decision level.

We test four different combinations for visual cues: 1)
motion only, 2) body pose only, 3) motion and body
pose merged at the module level, and 4) motion and
body pose merged at the decision level. The best accu-
racy is obtained when the motion and body pose cues
are integrated at the module level.

As shown, the accuracy of the classifier built with
visual cues merged at the decision level (81%) is only
1% greater than that achieved by the best single vi-
sual cue of body pose. However, when integrated at the
module level, the combination of pose and motion is 5%
higher than pose alone. We argue that because visual
cues model different but related aspects of the same
perceptual signal, the cues are strongly related, and
thus not conditionally independent. By combining at
the module level this dependence is explicitly modeled
and thus the merged cues generate more discriminative
features. This is supported by our result that the clas-
sifiers built with a single visual cue or built with visual
cues integrated at the decision level produce more false
negative cases than the classifiers built with visual cues
merged at the module level.

As shown in Figure 15(b), when the audio cue is
merged, the overall accuracy is slightly increased. It
is observed that when the audio cue is used together
with the visual cues, more interaction data are clas-
sified as being contingent; sometimes, human subjects
make some sound as a response during interactions, re-
gardless of the robot’s commands. For MNI data, there
are 33 cases where human subjects make some sound
while they are responding by imitating the robot and
there are 10 cases where human subjects make sound
when they are not supposed to imitate. These 10 cases
are detected only with the audio cue.

When considering both negotiation and game phases,
classifiers using either the visual cue or the audio cue
perform well only for one phase, but not for the other.
As shown in Figure 15(c), the average classification ac-
curacy when using M, B, A, M&B, and M/B cues are
less than 0.73. Overall, the best classification result,
an accuracy of 0.91, is obtained when the motion and
body pose cue are integrated at the module level and
the audio cue is merged with integrated visual cues at
the decision level.

10 Discussion

10.1 Three-Level Cue Integration

We integrated three different cues to improve contin-
gency detection. There are many factors to be consid-
ered when determining the appropriate level for cue in-
tegration. They include whether to model a response as
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an event or a change, and characteristics of cues (sam-
pling rate and dimensionality of cues, the correlation
between cue observations, and so on). The right inte-
gration level of the cue that is modeled as an event is
the decision level because the presence of this event can
be detected independent to the output of change-based
detectors.

The best integration level, however, for cues used
in change-based detectors depends on the correlation
between cue observations. With our data, we obtain
the best classifier when our visual cues are integrated
at the module level and the audio cue is integrated at
the decision level. Since the audio cue differs from the
motion and body pose cues in terms of the sampling
rate and dimensionality, it is integrated at the decision
level. It is modeled as an event because some direct
functional mapping from cue to response exists.

Visual cues are modeled as changes because there
is no such direct mapping. At the decision level, the
decision from each cue is merged with others assum-
ing conditional independence. On the other hand, at
the module level, the correlation between cue observa-
tions can be explicitly modeled in making a decision.
The visual cues model the different aspects of the same
perceptual region, so there exists heavy correlation be-
tween cues and thus one would predict an advantage
for the module level of integration. Our experimental
data support this conclusion.

10.2 Alternative to MNI as a Referent Event

We examined the effect of the point of MNI as a ref-
erent event on accuracy of contingency detection. The
MNI point is the time at which a robot has finished
conveying enough information for a human to give a se-
mantically appropriate response. To detect a response,
our contingency detector evaluates 4 seconds of data
after the point of MNI. If the MNI point is not avail-
able, a default choice for the referent event would be
tS , the time at which the robot starts a signal. The size
of the evaluation window with this referent event is un-
certain and larger because the relative location of the
MNI point with regard to tS changes, so the MNI point
could be possibly at one of many points between tS and
the time at which a robot finishes its signal.

We think that a more informative reference event
and an evaluation window could be learned using con-
tingency through interaction. A robot initially uses tS
as a referent event and a long timing window for eval-
uation. Every time a response is detected, the MNI is
inversely estimated and is associated with each partic-
ular type of a signal made by the robot, whether it
was speech-only, motion-only, or both. After obtaining

enough associations, a robot adjusts its timing model
and estimates the MNI without modeling information
transfer from the start.

10.3 The Role of Contingency Detection in Interaction

We introduced a computational model for semantics-
free contingency detection in which an event-based de-
tector using the audio cue looks for the presence of vo-
cal utterances and a changed-based detector using the
visual cues looks for a presence of visible changes in
human behavior. Because these cues model a generic
property of a human’s natural response, our learned
model should be transferable to a new task.

We applied contingency detection in different inter-
action scenarios. In [3], we used contingency detection
as a direct measurement of engagement. In order for
a robot to draw a human’s attention, a robot gener-
ates a probe signal to a human of interest and looks for
some behavioral change. The presence of a contingent
response from a human is a good indication that he is
willing to have a follow-up interaction with the robot.
We make a similar argument for detecting disengage-
ment. When a human decides to finish interactions, if
the robot fails to observe contingent responses, it is a
good indication that a human has finished interacting
with the robot.

In reciprocal turn-taking situations such as interac-
tions from the “Simon says” game, contingency can be
used as a signal. When taking turns with a human, a
robot needs to know when to relinquish the floor. Con-
tingency can be used as a signal for this. If the robot
detects a human’s contingent response, then it may in-
dicate the human is ready to take a turn or already has
it. The robot can then decide to yield the floor.

10.4 Limitation of Semantics-free Contingency
Detection

The main limitation of our semantics-free contingency
module is that detected responses are not grounded.
In order for the robot to act appropriately on such re-
sponses, the robot might need additional information
about responses such as semantics of responses and va-
lidity of responses with respect to the robot action (sig-
nal) and the context that the robot is situated in.

To overcome this limitation, we believe that a robot
should model and recognize a set of grounded responses
that are built from knowledge about the nature of the
interaction situation, and should also be able to ground
responses that are found by semantics-free contingency
detection. Within the current framework, we can model
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and recognize grounded responses as events. As future
work, we will investigate how to attribute semantics to
ungrounded responses through iterative interactions.

11 Conclusion

In this paper, we proposed a contingency detection frame-
work that integrates data from multiple cues. We col-
lected multimodal sensor data from a turn-taking human-
robot interaction scenario based on the turn-taking imi-
tation game “Simon says.” We implemented our multiple-
cue approach and evaluated it using motion and body
pose cues from a structured light depth sensor and au-
dio cues from a microphone. The results show that in-
tegrating multiple cues at appropriate levels offers an
improvement over individual cues for contingency de-
tection. We showed that using MNI as a referent event
provides contingency detectors a more reliable evalu-
ation window. From our constrained experiment, we
made important observation that human response tim-
ings and effective integration of cues are important fac-
tors to detect contingency. We believe that this observa-
tion is important to understand other factors situated
in more complex and ambiguous interactions. We be-
lieve that our contingency detection module improves
a social robot’s ability to engage in multimodal interac-
tions with humans when the semantics of the human’s
behavior are not known to the robot.
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